
Winter 2019 Math 412

Homework #4

Problems to hand in on Thursday, February 14, in the beginning of class. Write your answers out
carefully, staple pages, and write your name and section number on each page.

1) Let m and n be positive integers with (m,n) = 1. Show1 that Zmn
∼= Zm × Zn.

Solution. In Problem Set 2, we showed that given a, b ∈ Z, there is a unique solution
modulo mn to the system of equations{

x ≡ a mod n
x ≡ b mod m

We can rephrase this as saying that there is a well-defined map Zm × Zn −→ Zmn. This
map is a ring homomorphism: if{

x ≡ a mod n
x ≡ b mod m

and

{
y ≡ c mod n
y ≡ d mod m

then {
xy ≡ ac mod n
xy ≡ bd mod m

and

{
x+ y ≡ a+ c mod n
x+ y ≡ c+ d mod m

and this map takes (1, 1) to 1. This map is also surjective. To see that, notice that given
[x] in Znm, we have also shown in Problem Set 2 that the map that sends [x]mn to [x]n
is well-defined, since n|nm, and similarly for sending [x]mn to [x]m. That says that given
[x]mn ∈ Zmn, there is a well-defined element ([x]m, [x]n) ∈ Zm × Zn, and it is easy to check
that the image of ([x]m, [x]n) under our map is [x]mn.

We have a found a surjective ring homomorphism Zm×Zn −→ Zmn. Since these are two rings
with mn elements, this ring homomorphism must be injective, and thus an isomorphism.

2) Let V be a vector space. Recall that a function T : V → V is a linear transformation if for all
v, w ∈ V and all λ ∈ R, we have T (v + w) = T (v) + T (w) and T (λv) = λT (v).

(a) Show that the set of linear transformations from V to V , with usual addition, and compo-
sition of functions as multiplication, forms a ring.

(b) Consider the vector space R[x] and let L(R[x]) be the ring of linear transformations of R[x]
as defined in the previous part. Consider the element d

dx ∈ L(R[x]). Show that there is an

element F ∈ L(R[x]) such that d
dxF = 1L(R[x]), but there is no element G ∈ L(R[x]) such

that G d
dx = 1L(R[x]).

Solution.

1Hint: You can save a lot of work by referring back to problems from previous homeworks.
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(a) We check the axioms. The constant zero function is the zero of this ring; the “identity”
function is the one of this ring. Addition is associative: ((f + g) +h)(x) = (f + g)(x) +
h(x) = f(x)+g(x)+h(x) = f(x)+(g+h)(x) = (f+(g+h))(x), so (f+g)+h = f+(g+h).
Commutativity of addition is roughly the same. If f is linear, then −f is linear, so there
are additive inverses. Multiplication is associative, because composition of functions
is. The distributive laws are the most interesting: (f(g + h))(x) = f(g(x) + h(x)) =
f(g(x)) + f(h(x)) = (fg + fh)(x), so f(g + h) = fg + fh, and the other distributive
law is similar.

(b) Take F to be antidifferentiation (with some choice of constant of integration C). To
see no such G exists, note that d

dx(1) = 0. We would need to have G(0) = 1, but this
cannot happen for any linear function.

3) We say a ring R has characteristic n if n is the smallest positive integer such that

1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0.

If no such n exists, we say that R has characteristic 0.

(a) Give examples of a ring of characteristic 0 and a ring of characteristic n for each n > 2.

(b) Suppose that R is a commutative ring of prime characteristic p. Prove that the Freshman’s
Dream holds in R: (a+ b)p = ap + bp for all a, b ∈ R.

(c) Suppose that R is a commutative ring of prime characteristic p. Prove that the Frobenius
map r 7→ rp is a ring homomorphism R −→ R.

(d) Give an example to show that if the characteristic of R is not 2, r 7→ r2 may not be a ring
homomorphism.

Solution.

(a) Easiest example: Z, Zn.

(b) We use the binomial theorem: (a + b)n =
∑n

i=0

(
n
i

)
aibn−i. Now, p|

(
p
i

)
for all 1 ≤ i ≤

n− 1, so these coefficients are zero in R, and the formula then holds.

(c) It takes 1 to 1, rs to (rs)p = rpsp, and r + s to (r + s)p = rp + sp, using the previous
part.

(d) In Z, (1 + 1)2 = 4 6= 2 = 12 + 12.

4) Consider the field F = Z13. Construct the addition and the multiplication tables for this field
and use them to answer the following questions.

(a) Give a reasonable interpretation, in F, for the expressions 2,−4, 3/4,−4/3,
√
−1 (and care-

fully explain your reasoning).

(b) Solve the quadratic equation x2 + 6x + 4 = −1 by completing the square. Check your
answers!
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(c) Now solve the same equation by using the quadratic formula. Why is it valid over F? Is it
valid over any field?

(d) Use the usual discriminant D = b2 − 4ac to classify the equations ax2 + bx + c = 0 that
have two roots, a single root, or no root in F.

(e) Using the discriminant determine, without solving the equation, the number of roots of the
equation 7x2 + 4x+ 3 = 0.

Solution.

(a) 2 means [2], −4 means −4 = 9, 3/4 would be 3 · 4−1 = 9, and
√
−1 is a number whose

square is −1, e.g., 5.

(b) Working in F, we add (6/2)2 = 9 to both sides of the quadratic equation x2 + 6x = 7.
We get x2 + 6x + 9 = 5 (again, in Z11). This can be written (x + 3)2 = 5. Now, 5
is a square in two ways in Z11. We have [4]2 = [?4]2 = [7]2 = 5. So (x + 3) = 4 and
(x+ 3) = 7 both give solutions. The solutions are [1] and [4].

(c) Plugging in the values, and extracting square roots as above, we get the same solutions.
The quadratic formula is valid over any field in which 2 = 1+1 is a unit. The reason is
that we derive the formula by completing the square on the equation ax2 + bx+ c = 0,
which involves only using repeated ring/field axioms. Since we ”divide by 2” at some
point, we do need to make sure that 2 has a multiplicative inverse.

(d) In F = Z11, the numbers 0, 1, 4, 9, 5, 3 are the only squares. So ax2 + bx+ c = 0 has a
solution in F if and only if b2 − 4ac ∈ {0, 1, 3, 4, 5, 9}. It has two solutions in each case
except if b2 = 4ac, where it has exactly one solution.

(e) b2 − 4ac = (9)2 − 4(8)(3) = 4 − 8 = 7. Since 7 is not a square in F, there are no
solutions.
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