Homework #4

Problems to hand in on Thursday, February 14, in the beginning of class. Write your answers out carefully, staple pages, and write your name and section number on each page.

- 1) Let *m* and *n* be positive integers with (m, n) = 1. Show¹ that $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$.
- 2) Let V be a vector space. Recall that a function $T: V \to V$ is a *linear transformation* if for all $v, w \in V$ and all $\lambda \in \mathbb{R}$, we have T(v+w) = T(v) + T(w) and $T(\lambda v) = \lambda T(v)$.
 - (a) Show that the set of linear transformations from V to V, with usual addition, and *composition of functions* as multiplication, forms a ring.
 - (b) Consider the vector space $\mathbb{R}[x]$ and let $\mathcal{L}(\mathbb{R}[x])$ be the ring of linear transformations of $\mathbb{R}[x]$ as defined in the previous part. Consider the element $\frac{d}{dx} \in \mathcal{L}(\mathbb{R}[x])$. Show that there is an element $F \in \mathcal{L}(\mathbb{R}[x])$ such that $\frac{d}{dx}F = 1_{\mathcal{L}(\mathbb{R}[x])}$, but there is no element $G \in \mathcal{L}(\mathbb{R}[x])$ such that $G\frac{d}{dx} = 1_{\mathcal{L}(\mathbb{R}[x])}$.
- 3) We say a ring R has characteristic n if n is the smallest positive integer such that

$$\underbrace{1 + \dots + 1}_{n \text{ times}} = 0.$$

If no such n exists, we say that R has characteristic 0.

- (a) Give examples of a ring of characteristic 0 and a ring of characteristic n for each $n \ge 2$.
- (b) Suppose that R is a commutative ring of prime characteristic p. Prove that the Freshman's Dream holds in R: $(a + b)^p = a^p + b^p$ for all $a, b \in R$.
- (c) Suppose that R is a commutative ring of prime characteristic p. Prove that the Frobenius map $r \mapsto r^p$ is a ring homomorphism $R \longrightarrow R$.
- (d) Give an example to show that if the characteristic of R is not 2, $r \mapsto r^2$ may not be a ring homomorphism.
- 4) Consider the field $\mathbb{F} = \mathbb{Z}_{13}$. Construct the addition and the multiplication tables for this field and use them to answer the following questions.
 - (a) Give a reasonable interpretation, in \mathbb{F} , for the expressions 2, -4, 3/4, -4/3, $\sqrt{-1}$ (and carefully explain your reasoning).
 - (b) Solve the quadratic equation $x^2 + 6x + 4 = -1$ by completing the square. Check your answers!
 - (c) Now solve the same equation by using the *quadratic formula*. Why is it valid over \mathbb{F} ? Is it valid over any field?
 - (d) Use the usual discriminant $D = b^2 4ac$ to classify the equations $ax^2 + bx + c = 0$ that have two roots, a single root, or no root in \mathbb{F} .
 - (e) Using the discriminant determine, without solving the equation, the number of roots of the equation $7x^2 + 4x + 3 = 0$.

¹Hint: You can save a lot of work by referring back to a problem from previous homework.