
Winter 2019 Math 412

Homework #2

Problems to hand in on Thursday, January 31, in the beginning of class. Write your answers out
carefully, staple pages, and write your name and section number on each page.

1) When we define a function on Zn, we need to check that it is well-defined; many possible “rules”
we could think to assign are not well-defined.

(a) Is the assignment
Z3

// Z6

[a]3
� // [a]6

a well-defined function?

(b) Is the assignment
Z6

// Z3

[a]6
� // [a]3

a well-defined function?

(c) Show that if n|m then the rule
Zm

// Zn

[a]m
� // [a]n

is a well-defined function.

(d) Show that if n - m then the rule
Zm

// Zn

[a]m
� // [a]n

is not a well-defined function.

Solution.

(a) No! [0]3 = [3]3, but the rule maps these to [0]6 6= [3]6.

(b) Yes! If [a]6 = [b]6, then 6|(a− b). Consequently, 3|(a− b), and [a]3 = [b]3, as required.

(c) If [a]m = [b]m, then m|(a − b). Consequently, n|(a − b), since n|m. We then have
[a]n = [b]n, as required.

(d) Consider [0]m = [m]m. By hypothesis, n - m = (m − 0), so [0]n 6= [m]n. This means
that the map is not well-defined.

2) Fix two positive integers m,n where m and n are relatively prime (meaning gcd(m,n) = 1).
Consider the system of congruences {

x ≡ a (mod m)

x ≡ b (mod n)
(♣)

where a and b are arbitrary integers.
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(a) Prove that if rm + sn = 1, then x = asn + brm is a solution to system ♣.

(b) Prove that ♣ has a solution for all choices of a and b.

(c) Fix a solution x1 to system ♣. Show that every element in [x1]mn is a solution to system
♣.

(d) Fix a solution x1 to system ♣. Show the set of all solutions to ♣ is exactly [x1]mn.
Hint: use the fundamental theorem of arithmetic to show that if two relatively prime integers divides some

integer, then so does their product.]

(e) Find all integer solutions x ∈ Z to the system {x ≡ 7 (mod 20), x ≡ 11 (mod 97).}

Solution.

(a) We just need to check asn + brm mod m = asn mod m = a(1 − rm) mod m = a
mod m. Similarly, asn + brm mod n = b mod n.

(b) This follows from 1, since if m and n are relatively prime, then we can write 1 as a
Z-linear combination.

(c) Any arbitrary element of [x1]mn can be written x1 + mnk. Note that x1 + mnk
mod m = x1 mod m for any k ∈ Z; also x1 + mnk mod n = x1 mod n for any
k ∈ Z. So every element in [x1]mn is a solution if x1 is.

(d) Since x1 is a solution, we can write x1 = a + mk1 = b + nk2 for some k1, k2 ∈ Z.
Suppose that y is a solution. So y = a+mr1 and y = b+nr2 for some r1, r2 ∈ Z. This
means that x1 − y = m(k1 − r1) = n(k2 − r2). So x1 − y is divisible by both m and n.
So all the primes appearing in a prime factorization of m must appear in x1 − y and
likewise all the primes appearing in a prime factorization of n must appear in x1 − y;
since m and n have no primes in common, we have all primes of both m and n appear
in the prime factorization of x1 − y, so that mn divides x1 − y.

(e) We first use the reverse-engineered Euclidean algorithm to write 1 = −7 · 97 + 34 · 20.
So one solution is x = 7 · −7 · 97 + 11 · 34 · 20. So the set of all solutions is [7 · −7 · 97 +
11 · 34 · 20]97×20, or [2727]1940.

3) Recall the notion of equivalence relation from the worksheet on Congruence in Z, or look it up
in Appendix B of the text.

Consider a function f : X −→ Y between two sets X and Y . We define a relation ∼ on X by
saying x ∼ x′ if f(x) = f(x′).

(a) Show that ∼ is an equivalence relation.

(b) Find a bijection between the equivalence classes on X and the image of f .

Notice that this gives a partition of X.

(c) Prove that the equivalence relation on Z given by congruences modulo a fixed n is a particular
case of the equivalence ∼ above: i.e., find a function f . This gives a partition of Z; what
are the equivalence classes?

Solution.
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(a) We need to show this is reflexive, symmetric, and transitive.

∼ is reflexive: f(x) = f(x), so x ∼ x.

∼ is symmetric: If x ∼ y, then f(x) = f(y). Then f(xy) = f(x), so y ∼ x.

∼ is transitive: If x ∼ y and y ∼ z, then f(x) = f(y) and f(y) = f(z). Then
f(x) = f(z), so x ∼ z.

(b) We claim that the map f̄ sending [x] 7→ f(x) gives a bijection between the equiv-
alence classes of ∼ and the image of f . First, this is a well-defined function from
{equivalence classes of ∼} to image(f), since if [x] = [x′], then f(x) = f(x′), so they
map to the same thing.

To see this is bijective, we construct an inverse, which we will call g. For y ∈ image(f) ⊆
Y , write y = f(x) for some x ∈ X, which we can do since z ∈ image(f), and define
g(y) = [x]. This depended on the choice of some x such that y = f(x), so we need
to show that if we choose two different such x’s, we get the same value. Suppose that
f(x) = f(x′) = y. Then, by definition, x ∼ x′, so [x] = [x′]. Thus, g(y) returns the
same class [x] = [x′], no matter which preimage of y we chose. That is, g is a function
from image(f) to {equivalence classes of ∼}.
Now, f̄ and g are inverse functions. Indeed, given [x], let f(x) = y. We have g(f̄([x])) =
g(y) = [x]. Given y in the image of f , write y = f(x), and then f̄(g(y)) = f̄([x]) = y.

(c) Let f be the function sending an integer to its remainder when you divide by n: this
is the function we seek. The equivalence classes are just congruence classes modulo n.
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