Homework #2

Problems to hand in on Thursday, January 31, in the beginning of class. Write your answers out carefully, staple pages, and write your name and section number on each page.

- 1) When we define a function on \mathbb{Z}_n , we need to check that it is well-defined; many possible "rules" we could think to assign are not well-defined.
 - (a) Is the assignment

		$\mathbb{Z}_3 \longrightarrow \mathbb{Z}_6$
		$[a]_3 \longmapsto [a]_6$
	a well-defined function?	
(b)	Is the assignment	
		$\mathbb{Z}_6 \longrightarrow \mathbb{Z}_3$
		$[a]_6 \longmapsto [a]_3$
	a well-defined function?	
(c)	Show that if $n m$ then the rule	
		$\mathbb{Z}_m \longrightarrow \mathbb{Z}_n$
		$[a]_m \longmapsto [a]_n$
	is a well-defined function.	
(d)	Show that if $n \nmid m$ then the rule	

$$\mathbb{Z}_m \longrightarrow \mathbb{Z}_n$$
$$[a]_m \longmapsto [a]_n$$

is not a well-defined function.

Solution.

- (a) No! $[0]_3 = [3]_3$, but the rule maps these to $[0]_6 \neq [3]_6$.
- (b) Yes! If $[a]_6 = [b]_6$, then 6|(a-b). Consequently, 3|(a-b), and $[a]_3 = [b]_3$, as required.
- (c) If $[a]_m = [b]_m$, then m|(a b). Consequently, n|(a b), since n|m. We then have $[a]_n = [b]_n$, as required.
- (d) Consider $[0]_m = [m]_m$. By hypothesis, $n \nmid m = (m 0)$, so $[0]_n \neq [m]_n$. This means that the map is not well-defined.
- 2) Fix two positive integers m, n where m and n are relatively prime (meaning gcd(m, n) = 1). Consider the system of congruences

$$\begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$
(\$)

where a and b are arbitrary integers.

- (a) Prove that if rm + sn = 1, then x = asn + brm is a solution to system \clubsuit .
- (b) Prove that \clubsuit has a solution for all choices of a and b.
- (c) Fix a solution x_1 to system \clubsuit . Show that every element in $[x_1]_{mn}$ is a solution to system \clubsuit .
- (d) Fix a solution x_1 to system \clubsuit . Show the set of all solutions to \clubsuit is exactly $[x_1]_{mn}$. Hint: use the fundamental theorem of arithmetic to show that if two relatively prime integers divides some integer, then so does their product.]
- (e) Find **all** integer solutions $x \in \mathbb{Z}$ to the system $\{x \equiv 7 \pmod{20}, x \equiv 11 \pmod{97}\}$

Solution.

- (a) We just need to check $asn + brm \mod m = asn \mod m = a(1 rm) \mod m = a \mod m$. Similarly, $asn + brm \mod n = b \mod n$.
- (b) This follows from 1, since if m and n are relatively prime, then we can write 1 as a \mathbb{Z} -linear combination.
- (c) Any arbitrary element of $[x_1]_{mn}$ can be written $x_1 + mnk$. Note that $x_1 + mnk \mod m = x_1 \mod m$ for any $k \in \mathbb{Z}$; also $x_1 + mnk \mod n = x_1 \mod n$ for any $k \in \mathbb{Z}$. So every element in $[x_1]_{mn}$ is a solution if x_1 is.
- (d) Since x_1 is a solution, we can write $x_1 = a + mk_1 = b + nk_2$ for some $k_1, k_2 \in \mathbb{Z}$. Suppose that y is a solution. So $y = a + mr_1$ and $y = b + nr_2$ for some $r_1, r_2 \in \mathbb{Z}$. This means that $x_1 - y = m(k_1 - r_1) = n(k_2 - r_2)$. So $x_1 - y$ is divisible by both m and n. So all the primes appearing in a prime factorization of m must appear in $x_1 - y$ and likewise all the primes appearing in a prime factorization of n must appear in $x_1 - y$; since m and n have no primes in common, we have all primes of both m and n appear in the prime factorization of $x_1 - y$, so that mn divides $x_1 - y$.
- (e) We first use the reverse-engineered Euclidean algorithm to write $1 = -7 \cdot 97 + 34 \cdot 20$. So one solution is $x = 7 \cdot -7 \cdot 97 + 11 \cdot 34 \cdot 20$. So the set of all solutions is $[7 \cdot -7 \cdot 97 + 11 \cdot 34 \cdot 20]_{97 \times 20}$, or $[2727]_{1940}$.
- 3) Recall the notion of *equivalence relation* from the worksheet on Congruence in Z, or look it up in Appendix B of the text.

Consider a function $f: X \longrightarrow Y$ between two sets X and Y. We define a relation \sim on X by saying $x \sim x'$ if f(x) = f(x').

- (a) Show that \sim is an equivalence relation.
- (b) Find a bijection between the equivalence classes on X and the image of f. Notice that this gives a partition of X.
- (c) Prove that the equivalence relation on \mathbb{Z} given by congruences modulo a fixed n is a particular case of the equivalence \sim above: i.e., find a function f. This gives a partition of \mathbb{Z} ; what are the equivalence classes?

Solution.

- (a) We need to show this is reflexive, symmetric, and transitive. \sim is reflexive: f(x) = f(x), so $x \sim x$. \sim is symmetric: If $x \sim y$, then f(x) = f(y). Then f(xy) = f(x), so $y \sim x$. \sim is transitive: If $x \sim y$ and $y \sim z$, then f(x) = f(y) and f(y) = f(z). Then f(x) = f(z), so $x \sim z$.
- (b) We claim that the map \overline{f} sending $[x] \mapsto f(x)$ gives a bijection between the equivalence classes of \sim and the image of f. First, this is a well-defined function from {equivalence classes of \sim } to image(f), since if [x] = [x'], then f(x) = f(x'), so they map to the same thing.

To see this is bijective, we construct an inverse, which we will call g. For $y \in \text{image}(f) \subseteq Y$, write y = f(x) for some $x \in X$, which we can do since $z \in \text{image}(f)$, and define g(y) = [x]. This depended on the *choice* of some x such that y = f(x), so we need to show that if we choose two different such x's, we get the same value. Suppose that f(x) = f(x') = y. Then, by definition, $x \sim x'$, so [x] = [x']. Thus, g(y) returns the same class [x] = [x'], no matter which preimage of y we chose. That is, g is a function from image(f) to {equivalence classes of \sim }.

Now, \bar{f} and g are inverse functions. Indeed, given [x], let f(x) = y. We have $g(\bar{f}([x])) = g(y) = [x]$. Given y in the image of f, write y = f(x), and then $\bar{f}(g(y)) = \bar{f}([x]) = y$.

(c) Let f be the function sending an integer to its remainder when you divide by n: this is the function we seek. The equivalence classes are just congruence classes modulo n.