Homework #2

Problems to hand in on Thursday, January 31, in the beginning of class. Write your answers out carefully, staple pages, and write your name and section number on each page.

- 1) When we define a function on \mathbb{Z}_n , we need to check that it is well-defined; many possible "rules" we could think to assign are not well-defined.
 - (a) Is the assignment

		$\mathbb{Z}_3 \longrightarrow \mathbb{Z}_6$	3
		$[a]_3 \longmapsto [a]$	6
	a well-defined function?		
(b)	Is the assignment		
. ,		$\mathbb{Z}_6 \longrightarrow \mathbb{Z}_3$	3
		$[a]_6 \longmapsto [a]$	3
	a well-defined function?		
(c)	Show that if $n m$ then the rule		
		77 . 77	

 $\mathbb{Z}_m \longrightarrow \mathbb{Z}_n$ $[a]_m \longmapsto [a]_n$

is a well-defined function.

(d) Show that if $n \nmid m$ then the rule

$$\mathbb{Z}_m \longrightarrow \mathbb{Z}_n$$
$$[a]_m \longmapsto [a]_n$$

is *not* a well-defined function.

2) Fix two positive integers m, n where m and n are relatively prime (meaning gcd(m, n) = 1). Consider the system of congruences

$$\begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$
(\$)

where a and b are arbitrary integers.

- (a) Prove that if rm + sn = 1, then x = asn + brm is a solution to system \clubsuit .
- (b) Prove that \clubsuit has a solution for all choices of a and b.
- (c) Fix a solution x_1 to system \clubsuit . Show that every element in $[x_1]_{mn}$ is a solution to system \clubsuit .
- (d) Fix a solution x_1 to system \clubsuit . Show the set of all solutions to \clubsuit is exactly $[x_1]_{mn}$. Hint: use the fundamental theorem of arithmetic to show that if two relatively prime integers divides some integer, then so does their product.]

- (e) Find **all** integer solutions $x \in \mathbb{Z}$ to the system $\{x \equiv 7 \pmod{20}, x \equiv 11 \pmod{97}\}$
- 3) Recall the notion of *equivalence relation* from the worksheet on Congruence in Z, or look it up in Appendix B of the text.

Consider a function $f: X \longrightarrow Y$ between two sets X and Y. We define a relation \sim on X by saying $x \sim x'$ if f(x) = f(x').

- (a) Show that \sim is an equivalence relation.
- (b) Find a bijection between the equivalence classes on X and the image of f. Notice that this gives a partition of X.
- (c) Prove that the equivalence relation on \mathbb{Z} given by congruences modulo a fixed n is a particular case of the equivalence \sim above: i.e., find a function f. This gives a partition of \mathbb{Z} ; what are the equivalence classes?