Homework #11

Problems to hand in on Thursday, April 18, in the beginning of class. Write your answers out carefully, staple pages, and write your name and section number on each page.

- 1) Consider the group $G = \mathbb{Z}_{40}^{\times}$.
 - (a) G has 16 elements. List them.
 - (b) The subgroup $H = \langle [7] \rangle$ has four elements. List the four elements of G/H. Note that each element of G/H is a set; for each of these sets, list all of its elements.
 - (c) Use the definition of the group structure of G/H to create a multiplication table for the quotient group G/H.

Solution.

- (a) We will drop the brackets for ease of notation. $\{1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39\}.$
- (b) The elements of G/H are the four cosets:

 $H = \{1, 7, 9, 23\}$ $3H = \{3, 21, 27, 29\}$ $11H = \{11, 13, 19, 37\}$ $17H = \{17, 31, 33, 39\}$

		Н	3H	11H	17H
(c)	H	Н	3H	11H	17H
	3H	3H	Н	17H	11H
	11H	11H	17H	Н	3H
	17H	17H	11H	3H	Н

2) Let G be an abelian group, not necessarily finite.

- (a) Show that the set T of elements of G of finite order forms a subgroup of G.
- (b) Show that every nonidentity element of G/T has infinite order.

Solution.

- (a) We note first that $e \in T$. If $t, t' \in T$, then there are integers m, n such that $t^m = (t')n = e$. Then $(tt')^{mn} = t^{mn}t'^{mn}$, using the abelian property, and $t^{mn} = (t^m)^n = e$, and $t'^{mn} = ((t')^n)^m = e$, so $(tt')^{mn} = e$. Finally, the order of an element is equal to the order of its inverse, so T is closed under inverses. It follows that T is a subgroup.
- (b) Let $Tg \in G/T$. If g has finite order in G then $g \in T$ so Tg = T, which is the identity element. If $Tg \neq T$, then $g \notin T$. Suppose that $(Tg)^n = T$. Then $g^n \in T$, so for some $m, e = (g^n)^m = g^{mn}$, so $g \in T$. Thus, the only element of finite order is the identity.

- 3) Let O(2) denote the subgroup of orthogonal 2×2 matrices in $M_2(\mathbb{R})$.¹
 - (a) Compute the kernel and the image of the determinant homomorphism det: $O(2) \to \mathbb{R}^{\times}$.
 - (b) Use part (a) to show that $O(2)/SO(2) \cong \{\pm 1\}$. Describe the elements of O(2)/SO(2): what sets of linear transformations from $\mathbb{R}^2 \to \mathbb{R}^2$ are they?
 - (c) Find two elements $M, N \in O(2)$ of finite order whose product has infinite order. Conclude that the set of elements of finite order in O(2) do not form a subgroup.

Solution.

- (a) The kernel is the set of orthogonal matrices with determinant 1. We called this SO(2) in a previous assignment. Every orthogonal matrix has determinant ± 1 , so the image is the group $\{\pm 1\}$.
- (b) If we change the target of the determinant and consider the surjective homomorphism det : $O(2) \rightarrow \{\pm 1\}$, the First Isomorphism Theorem says that $O(2)/SO(2) \cong \{\pm 1\}$. The two cosets are SO(2), the set of rotations of the plane, and $O(2) \smallsetminus SO(2)$, the set of reflections of the plane.

(c) Let α be a number such that $\frac{\alpha}{2\pi}$ is irrational. Let $M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ be the matrix for the linear transformation of reflection over the *x*-axis, and let $N = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{bmatrix}$ be the matrix for reflection over the line that makes the angle $\frac{\alpha}{2}$ with the *x*-axis. These reflections have order 2. The product MN is rotation by α , which has infinite order.

THEOREM 9.7: FUNDAMENTAL STRUCTURE THEOREM FOR FINITE ABELIAN GROUPS: Let G be a finite abelian group. Then G is isomorphic to a group of the form

$$\mathbb{Z}_{p_1^{a_1}} \times \mathbb{Z}_{p_2^{a_2}} \times \mathbb{Z}_{p_3^{a_3}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}}$$

where $p_1, p_2, \ldots p_n$ are (not necessarily distinct!) prime numbers. Moreover, the product is unique, up to re-ordering the factors.

- 4) (a) Suppose that G is abelian and has order 8. Use the Structure Theorem for Finite Abelian Groups to show that up to isomorphism, G must be isomorphic to one of three possible groups, each a product of cyclic groups of prime power order.
 - (b) Determine the number of abelian groups of order 12, up to isomorphism.
 - (c) For p prime, how many isomorphism types of abelian groups of order p^5 ?
 - (d) If an abelian group of order 100 has no element of order 4, prove that G contains a Klein 4-group.

Solution.

¹If you aren't familiar with this notion from 217, it means matrices $M = [\vec{v} \cdot \vec{w}]$ with $\vec{v} \cdot \vec{v} = \vec{w} \cdot \vec{w} = 1$ and $\vec{v} \cdot \vec{w} = 0$.

- (a) By the Structure Theorem, G is isomorphic to either \mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.
- (b) There are 2: $\mathbb{Z}_3 \times \mathbb{Z}_4$ and $\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.
- (c) We just need to count all the ways to write p^5 as a product of prime powers: p^5 , $p^4 \times p$, $p^3 \times p^2$, $p^3 \times p \times p$, $p^2 \times p^2 \times p$, $p^2 \times p \times p$. So there are 7 abelian groups of order p^5 (up to isomorphism).
- (d) An abelian group of order 100 that does not contain an element of order 4 must be isomorphic to either $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_{25}$, or $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}_5$. The first contains the Klein 4-group $\{(a, b, 0) \mid a, b \in \mathbb{Z}_2\}$, and the second contains the Klein 4-group $\{(a, b, 0, 0) \mid a, b \in \mathbb{Z}_2\}$.