
Math 412. Adventure sheet on polynomial rings

DEFINITION: A polynomial is monic if its leading term (i.e., the term of highest degree)
has coefficient 1.

THE DIVISION ALGORITHM FOR POLYNOMIALS. Let F be a field and f(x), g(x) ∈ F [x]
with g(x) 6= 0. Then there exist unique polynomials q(x), r(x) ∈ F [x] such that

f(x) = q(x)g(x) + r(x) and either r(x) = 0 or deg r(x) < deg g(x).

THEOREM 4.8: Let F be a field and a(x), b(x) ∈ F [x], not both zero. Then there is a
unique monic polynomial that is the greatest common divisor d(x) of a(x) and b(x). There
exist (not necessarily unique) u(x), v(x) ∈ F [x] such that u(x)a(x) + v(x)b(x) = d(x).

THEOREM 4.14: Let F be a field. Every nonconstant polynomial in F [x] can be factored
into irreducible polynomials. This factorization is essentially unique in the sense that if we
have two factorizations into irreducibles

f1 · · · fr = g1 · · · gs,
then r = s, and after reordering, each fi is a unit multiple of gi for all i.

A. PRACTICE WITH THE DIVISION ALGORITHM FOR POLYNOMIALS. You may have learned
to divide polynomials to find a quotient and remainder in high school. The goal in every step
is to find some axn (that will go into the “quotient”) that makes the leading term of the divisor
cancel the leading term of the dividend.

(1) Let f = x3 + 4x2 + x+ 1 in R[x]. Find q and r so that f = qx2 + r, where deg r < 2.1

(2) In the ring F2[x], divide the polynomial x5 + 3x3 + x2 + 1 by x2 + 1. What are the
quotient and remainder?

(3) In the ring Q[x], divide x4+3x3−x2+5 by x+1. What are the quotient and remainder?
(4) Consider the polynomials f(x) = x2 − 3 and g(x) = 2x − 1 in R = Z[x]. What

happens if you try to divide f(x) by g(x) in Z[x]? Is the division algorithm theorem for
polynomials true if we only assume that “F ” is a domain?

Solution.
(1) q = x+ 4, r = x+ 1.
(2) q = x3 + 1, r = 0
(3) q = x3 + 2x2 − 3x+ 3, r = 2.
(4) It doesn’t work when we try to do it becuase we end up dividing by 2. The division

algorithm is FALSE in this setting. We can show that this f, g are a counterexam-
ple to the analgous statement over Z[x]. We will prove that no such q, r as in the
statement exist by contradiction. If there were q, r ∈ Z[x] with deg r < deg g = 1
such that f = qg + r, these would also live in R[x], and satisfy the hypotheses of
the division algorithm there. Such a solution is unique, and we can find that it is
q(x) = 1

2
x + 1

4
and r(x) = −11

4
. But, these are not elements of Z[x], so this is a

contradiction.

1Hint: If this is unfamiliar to you, the first term we want in q is some axn such that (axn)(x2) = (x3). Now
subtract off (axn)(x2) from f and continue. . .
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B. THE PROOF OF THE DIVISION ALGORITHM FOR POLYNOMIALS:
The proof uses a similar method as the proof for Z.
(1) Consider the set S := {f(x) − g(x)q(x) | q(x) ∈ F [x]} ⊆ F [x]. Explain why the

existence part of the Division algorithm is equivalent to the statement that 0 ∈ S or S
contains an element of degree less than deg d.

(2) Show that if S contains an element of degree 0, the division algorithm holds for f(x)
and g(x).

(3) If S contains an element h of degree δ′ > δ = deg(g), subtract a suitable multiple of g
to find a smaller degree element in S.

(4) Prove the existence part of the statement. Hint: Chose an element of smallest positive
degree in S. What axiom guarantees we can do this?

(5) Prove the uniqueness part of the statement.

Solution. See page 92 in the book.

C. FINDING GCDS. Use Theorem 4.14 to find the greatest common divisor of the given poly-
nomials.

(1) Compute the greatest common divisor of 2x2 − 10x+ 12 and x7 − 3x6 in Q[x].
(2) Compute the greatest common divisor of (x2 + 1)(x3 + x2) and x5(x+ 1)2 in Z2[x].
(3) Discuss Theorem 4.8 above with your team. Write out what the theorem says about the

gcds you found (1) and (2). [Your statement should use the words ”there exist”.]

Solution.
(1) Factor: 2x2 − 10x+ 12 = 2(x− 3)(x− 2) and x7 − 3x6 = x6(x− 3) so (x− 3) is

the gcd.
(2) This is tricky because the coefficients are in Z2. Note that (x + 1)2 = x2 + 1 in

Z2[x]. So (x2 + 1)(x3 + x2) = (x+ 1)3x2 and x5(x+ 1)2 so the gcd is x2(x+ 1)2.
(3) The theorem says that there exists f, g,∈ Q[x] such that f(2x2 − 10x + 12) +

g(x7 − 3x6) = x − 3. Also that there exists f, g,∈ Z2[x] such that x2(x + 1)2 =
f(x2 + 1)(x3 + x2) + gx5(x+ 1)2.

D. EUCLIDEAN ALGORITHM IN F[x]. Fix a field F.
(1) Suppose that f, g ∈ F[x], and we use the division algorithm to write f = qg + r for

some appropriate q, f ∈ F[x]. Prove that gcd (f, g) = gcd (g, r). [Hint: the proof is
basically “the same” as for the ring Z.]

(2) Use the Euclidean Algorithm to compute (f, g), where f = x3+4x2+x and g = x2+x
in C[x].

(3) Express x as a linear combination of f and g from the previous part.
(4) Sketch a proof of THEOREM 4.8.

Solution.
(1) The proof is basically the same as for the ring Z. If d divides both f and g, write

f = ad and g = db. Then d must divide r = f − gq = da − dbq = d(a − bq).
Similarly, if d divides both g and r, it must divide g. So the common factors of f
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and g are the same as the common factors of g and r. So the common monic factor
with the largest degree is the same too.

(2) To compute (x3 + 4x2 + x, x2 + x), we first write x3 + 4x2 + x = q(x2 + x) + r,
where q = x+ 3 and r = −2x. We know that

(x3 + 4x2 + x, x2 + x) = (x2 + x,−2x).
Now, by inspection we see that x is the highest degree monic polynomial dividing
both.

(3) Backsubstitute to get x = −1
2
(x3 + 4x2 + x) + x−3

2
(x2 + x).

(4) We can run the Euclidean algorithm to get to the GCD. Backsubstituting, we can
express each remainder as a linear combination of the dividend and divisor before
it, and eventually get the GCD as a linear combination of the things we started with.

E. THE REMAINDER THEOREM AND THE FACTOR THEOREM. Fix f ∈ F[x].
(1) Remainder Theorem: Prove that for any λ ∈ F, the remainder when f is divided by

(x− λ) is f(λ).
(2) Factor Theorem: Prove that (x− λ) divides f if and only if f(λ) = 0.
(3) Show that 1, 2, 3 and 4 are all roots of x4 − 1 in Z5[x].
(4) Use the factor theorem to find the factorization of x5 − x completely into irreducibles

as guaranteed by Theorem 4.14 in the ring Z5[x].
(5) Find the factorization of x5 − x completely into irreducibles as guaranteed by Theorem

4.14 in the ring Z7[x].

Solution.
(1) Use the division algorithm to write f = q(x − λ) + r where r = 0 or deg r <

deg(x − λ) = 1. This tells us that r is a constant polynomial. To figure out what
constant polynomial, plus in λ to both sides and observe r = f(λ).

(2) Since we know f = (x − λ) + f(λ), we see that that is f(λ) = 0, then (x − λ)|f .
Conversely, if (x − λ)|f , then in the unique division statement, the remainder is
zero. But also the remainder is f(λ).

(3) Plug them in!
(4) We have five roots 0, 1, 2, 3, 4. Thus, we get five irreducible factors, so x(x−1)(x−

2)(x− 3)(x− 4) divides f . Since the degrees match there must be no other factors
and no repeated factors, and since the leading coefficients agree, this must be it.

F. IRREDUCIBILITY. Let F be any field.
(1) Show that if a polynomial g ∈ F[x] has degree three or two, then g is irreducible if and

only if g has no roots.
(2) Show that (1) is false for polynomials of degree 4, even in R[x].

G. POLYNOMIAL RINGS OVER DOMAINS. Let R be a domain (which may or may not be a
field!).

(1) Let g(x) ∈ R[x] be a monic polynomial, and f(x) ∈ R[x] be any polynomial. Show
that there exist unique polynomials q(x), r(x) ∈ R[x] such that

f(x) = q(x)g(x) + r(x) and either r(x) = 0 or deg r(x) < deg g(x).
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(2) Show that if r ∈ R, and f(x) ∈ R[x], then f(r) = 0 if and only if (x− r) divides f(x)
in R[x].

Solution. Use essentially the same proofs as in the field case!
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Fix a polynomial f(x) ∈ F[x]. Define two polynomials g, h ∈ F[x] to be congruent
modulo f if f |(g − h). We write g ≡ h mod f . The set of all polynomials congruent to g
modulo f is written [g]f .

G. CONGRUENCE IN F[x].
(1) Prove that Congruence is an equivalence relation:

(a) reflexive: for all g, we have g ≡ g mod f ;
(b) symmetric: g ≡ h mod f implies h ≡ g mod f for all g, h ∈ F[x].
(c) transitive: g ≡ h mod f and h ≡ k mod f implies g ≡ k mod f for all

g, h, k ∈ F[x].
(2) Prove that [g]f = {g + kf | k ∈ F[x]}.
(3) Prove that if h ∈ [g]f , then [g]f = [h]f .
(4) Explain why, for any two polynomials g, h ∈ F[x], either [g]f = [h]f or [g]f ∩ [h]f = ∅.

Solution. Use the same ideas as we did for congruence classes modulo n over Z.

H. CONGRUENCE CLASSES IN F[x]. Fix a polynomial f(x) ∈ F[x] of degree d > 0.
(1) Prove that every congruence class [g]f contains a unique polynomial of degree less than

d.
(2) How many distinct congruence classes are there for Z2[x] modulo x3 + x?
(3) How many distinct congruence classes are there for Z3[x] modulo x2 + x?

Solution.
(1) For each congruence class modulo f , pick some element g in that congruence class.

Let r be the remainder of dividing g by f ; then r has degree less than d, and f |(f−r)
by definition of r. So every congruence class contains at least one element of degree
less than d.

Given two polynomials g and h of degree less than d, f − g is a polynomial of
degree less than d, and the only polynomial of degree smaller than d that f divides
is 0. We conclude that f |(g − h) if and only if g = h. So each congruence class
contains at most one polynomial of degree less than d.

(2) 23 = 8.
(3) 32 = 4

I. RING STRUCTURE ON THE SET OF CONGRUENCE CLASSES MODULO f IN F[x].

(1) Fix a polynomial f(x) ∈ F[x] of degree d > 0. Let R be the set of all congruence
classes modulo f . Can you define a natural addition and multiplication onR to make it
into a ring? Remember: Each is element ofR is a set, so be careful with your definition!

(2) In the case of Z2[x] modulo x2, the ring R has only four elements: why? Make a table
for your operations onR. To what familiar ring isR isomorphic?

Solution.
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(1) Just as we did with congruences modulo n, we can check that [g] + [h] = [g + h]
and [g] · [h] = [gh] are well-defined operations, and they make R into a ring with
zero [0] and one [1].

(2) There are only four polynomials of degree less 2: 0, 1, x, and x+1. Each one of these
represents a distinct class. This ring is isomorphic to Z2 × Z2, with isomorphism
given by

(0, 0) oo // 0

(1, 1) oo // 1

(1, 0) oo // 1 + x

(0, 1) oo // x


