Math 412. Adventure sheet on polynomial rings

Definition: A polynomial is monic if its leading term (i.e., the term of highest degree) has coefficient 1.

The Division Algorithm for polynomials. Let F be a field and $f(x), g(x) \in F[x]$ with $g(x) \neq 0$. Then there exist unique polynomials $q(x), r(x) \in F[x]$ such that

$$
f(x)=q(x) g(x)+r(x) \text { and either } r(x)=0 \text { or } \operatorname{deg} r(x)<\operatorname{deg} g(x)
$$

Theorem 4.8: Let F be a field and $a(x), b(x) \in F[x]$, not both zero. Then there is a unique monic polynomial that is the greatest common divisor $d(x)$ of $a(x)$ and $b(x)$. There exist (not necessarily unique) $u(x), v(x) \in F[x]$ such that $u(x) a(x)+v(x) b(x)=d(x)$.

THEOREM 4.14: Let F be a field. Every nonconstant polynomial in $F[x]$ can be factored into irreducible polynomials. This factorization is essentially unique in the sense that if we have two factorizations into irreducibles

$$
f_{1} \cdots f_{r}=g_{1} \cdots g_{s}
$$

then $r=s$, and after reordering, each f_{i} is a unit multiple of g_{i} for all i.
A. Practice with the Division Algorithm for Polynomials. You may have learned to divide polynomials to find a quotient and remainder in high school. The goal in every step is to find some $a x^{n}$ (that will go into the "quotient") that makes the leading term of the divisor cancel the leading term of the dividend.
(1) Let $f=x^{3}+4 x^{2}+x+1$ in $\mathbb{R}[x]$. Find q and r so that $f=q x^{2}+r$, where $\operatorname{deg} r<2 .{ }^{1}$
(2) In the ring $\mathbb{F}_{2}[x]$, divide the polynomial $x^{5}+3 x^{3}+x^{2}+1$ by $x^{2}+1$. What are the quotient and remainder?
(3) In the ring $\mathbb{Q}[x]$, divide $x^{4}+3 x^{3}-x^{2}+5$ by $x+1$. What are the quotient and remainder?
(4) Consider the polynomials $f(x)=x^{2}-3$ and $g(x)=2 x-1$ in $R=\mathbb{Z}[x]$. What happens if you try to divide $f(x)$ by $g(x)$ in $\mathbb{Z}[x]$? Is the division algorithm theorem for polynomials true if we only assume that " F " is a domain?

B. The Proof of the Division Algorithm for Polynomials:

The proof uses a similar method as the proof for \mathbb{Z}.
(1) Consider the set $\mathcal{S}:=\{f(x)-g(x) q(x) \mid q(x) \in F[x]\} \subseteq F[x]$. Explain why the existence part of the Division algorithm is equivalent to the statement that $0 \in \mathcal{S}$ or \mathcal{S} contains an element of degree less than deg d.
(2) Show that if \mathcal{S} contains an element of degree 0 , the division algorithm holds for $f(x)$ and $g(x)$.
(3) If \mathcal{S} contains an element h of degree $\delta^{\prime} \geqslant \delta=\operatorname{deg}(g)$, subtract a suitable multiple of g to find a smaller degree element in \mathcal{S}.
(4) Prove the existence part of the statement. Hint: Chose an element of smallest positive degree in \mathcal{S}. What axiom guarantees we can do this?
(5) Prove the uniqueness part of the statement.

[^0]C. Finding gcds. Use Theorem 4.14 to find the greatest common divisor of the given polynomials.
(1) Compute the greatest common divisor of $2 x^{2}-10 x+12$ and $x^{7}-3 x^{6}$ in $\mathbb{Q}[x]$.
(2) Compute the greatest common divisor of $\left(x^{2}+1\right)\left(x^{3}+x^{2}\right)$ and $x^{5}(x+1)^{2}$ in $\mathbb{Z}_{2}[x]$.
(3) Discuss Theorem 4.8 above with your team. Write out what the theorem says about the gcds you found (1) and (2). [Your statement should use the words "there exist".]
D. Euclidean Algorithm in $\mathbb{F}[x]$. Fix a field \mathbb{F}.
(1) Suppose that $f, g \in \mathbb{F}[x]$, and we use the division algorithm to write $f=q g+r$ for some appropriate $q, f \in \mathbb{F}[x]$. Prove that $\operatorname{gcd}(f, g)=\operatorname{gcd}(g, r)$. [Hint: the proof is basically "the same" as for the ring \mathbb{Z}.]
(2) Use the Euclidean Algorithm to compute (f, g), where $f=x^{3}+4 x^{2}+x$ and $g=x^{2}+x$ in $\mathbb{C}[x]$.
(3) Express x as a linear combination of f and g from the previous part.
(4) Sketch a proof of THEOREM 4.8.
E. The Remainder Theorem and the Factor Theorem. Fix $f \in \mathbb{F}[x]$.
(1) Remainder Theorem: Prove that for any $\lambda \in \mathbb{F}$, the remainder when f is divided by $(x-\lambda)$ is $f(\lambda)$.
(2) Factor Theorem: Prove that $(x-\lambda)$ divides f if and only if $f(\lambda)=0$.
(3) Show that $1,2,3$ and 4 are all roots of $x^{4}-1$ in $\mathbb{Z}_{5}[x]$.
(4) Use the factor theorem to find the factorization of $x^{5}-x$ completely into irreducibles as guaranteed by Theorem 4.14 in the ring $\mathbb{Z}_{5}[x]$.
(5) Find the factorization of $x^{5}-x$ completely into irreducibles as guaranteed by Theorem 4.14 in the ring $\mathbb{Z}_{7}[x]$.
F. Irreducibility. Let \mathbb{F} be any field.
(1) Show that if a polynomial $g \in \mathbb{F}[x]$ has degree three or two, then g is irreducible if and only if g has no roots.
(2) Show that (1) is false for polynomials of degree 4 , even in $\mathbb{R}[x]$.
G. Polynomial rings over domains. Let R be a domain (which may or may not be a field!).
(1) Let $g(x) \in R[x]$ be a monic polynomial, and $f(x) \in R[x]$ be any polynomial. Show that there exist unique polynomials $q(x), r(x) \in R[x]$ such that
$$
f(x)=q(x) g(x)+r(x) \text { and either } r(x)=0 \text { or } \operatorname{deg} r(x)<\operatorname{deg} g(x)
$$
(2) Show that if $r \in R$, and $f(x) \in R[x]$, then $f(r)=0$ if and only if $(x-r)$ divides $f(x)$ in $R[x]$.

Fix a polynomial $f(x) \in \mathbb{F}[x]$. Define two polynomials $g, h \in \mathbb{F}[x]$ to be congruent modulo f if $f \mid(g-h)$. We write $g \equiv h \bmod f$. The set of all polynomials congruent to g modulo f is written $[g]_{f}$.

G. Congruence in $\mathbb{F}[x]$.

(1) Prove that Congruence is an equivalence relation:
(a) reflexive: for all g, we have $g \equiv g \bmod f$;
(b) symmetric: $g \equiv h \bmod f$ implies $h \equiv g \bmod f$ for all $g, h \in \mathbb{F}[x]$.
(c) transitive: $g \equiv h \bmod f$ and $h \equiv k \bmod f$ implies $g \equiv k \bmod f$ for all $g, h, k \in \mathbb{F}[x]$.
(2) Prove that $[g]_{f}=\{g+k f \mid k \in \mathbb{F}[x]\}$.
(3) Prove that if $h \in[g]_{f}$, then $[g]_{f}=[h]_{f}$.
(4) Explain why, for any two polynomials $g, h \in \mathbb{F}[x]$, either $[g]_{f}=[h]_{f}$ or $[g]_{f} \cap[h]_{f}=\emptyset$.
H. Congruence Classes in $\mathbb{F}[x]$. Fix a polynomial $f(x) \in \mathbb{F}[x]$ of degree $d>0$.
(1) Prove that every congruence class $[g]_{f}$ contains a unique polynomial of degree less than d.
(2) How many distinct congruence classes are there for $\mathbb{Z}_{2}[x]$ modulo $x^{3}+x$?
(3) How many distinct congruence classes are there for $\mathbb{Z}_{3}[x]$ modulo $x^{2}+x$?

I. Ring Structure on the set of Congruence Classes modulo f in $\mathbb{F}[x]$.

(1) Fix a polynomial $f(x) \in \mathbb{F}[x]$ of degree $d>0$. Let \mathcal{R} be the set of all congruence classes modulo f. Can you define a natural addition and multiplication on \mathcal{R} to make it into a ring? Remember: Each is element of \mathcal{R} is a set, so be careful with your definition!
(2) In the case of $\mathbb{Z}_{2}[x]$ modulo x^{2}, the ring \mathcal{R} has only four elements: why? Make a table for your operations on \mathcal{R}. To what familiar ring is \mathcal{R} isomorphic?

[^0]: ${ }^{1}$ Hint: If this is unfamiliar to you, the first term we want in q is some $a x^{n}$ such that $\left(a x^{n}\right)\left(x^{2}\right)=\left(x^{3}\right)$. Now subtract off $\left(a x^{n}\right)\left(x^{2}\right)$ from f and continue...

