
Math 412 Adventure sheet on the Orbit Stabilizer Theorem

Fix a group action of the group G on the set X .
DEFINITION: The orbit of an element x ∈ X is the subset of X

O(x) := {g · x | g ∈ G} ⊆ X.

DEFINITION: The stabilizer of an element x ∈ X is the subgroup of G

Stab(x) = {g ∈ G | g(x) = x} ⊂ G.

ORBIT-STABILIZER THEOREM: If a finite group G acts on a set X , then for every x ∈ X , we have

|G| = |O(x)| · |Stab(x)|.

A. Let D4 be the symmetry group of the square. Consider the natural action of D4 on the square with vertices
(±1,±1) by rotations and reflections.

(1) Complete the following chart which records, for different points of the square, the orbit, stabilizer, and
cardinalities of each.

(x, y) ∈ R2 O(x, y) stab(x, y) # O(x, y) # stab(x, y)
(0, 0)
(1, 0)
(1, 1)
(1, 1

10)
(12 ,

1
3)

(2) Verify the orbit stabilizer theorem for each of the five points in your chart.

Solution.
(1) We will use the notation {e, r, r2, r3, lv, lh, l(1,1), l(1,−1)}, where lv is the reflection on the line x = 0,

lh is the reflection on the line y = 0, l(1,1) is the reflection on the line x = y and l(1,−1) is the
reflection on the line y = −x.

(x, y) ∈ R2 O(x, y) stab(x, y) # O(x, y) # stab(x, y)
(0, 0) {(0, 0)} D4 1 8
(1, 0) {(±1, 0), (0,±1)} {e, lh} 4 2
(1, 1) {(±1,±1)} {e, l(1,1)} 4 2
(1, 1

10) {(±1,± 1
10), (±

1
10 ,±1)} {e} 8 1

(12 ,
1
3) {(±1

2 ,±
1
3), (±

1
3 ,±

1
2)} {e} 8 1

(2) Easy: the number of elements in the orbit times the number of elements in the stabilizer is the same,
always 8, for each point.

B. THE STABILIZER OF EVERY POINT IS A SUBGROUP. Assume a group G acts on a set X . Let x ∈ X .
(1) Prove that the stabilizer of x is a subgroup of G.
(2) Use the Orbit-Stabilizer theorem to prove that the cardinality of every orbit divides |G|.



(3) Let G be a group of order 17 and let X be a set with 16 elements. Explain why there is no nontrivial
action of G on X . [The trivial action is the one in which g · x = x for all g ∈ G and all x ∈ X .]

Solution.
(1) We need to show that Stab(x) = {g ∈ G | g · x = x} is a subgroup of G. It suffices to check:

(a) Stab(x) is non-empty; this is easy since eG · x = x (by definition of action), so eG ∈ Stab(x).
(b) If a, b ∈ Stab(x), then ab ∈ Stab(x). Also pretty easy: take arbitrary a, b ∈ Stab(x). We

compute (a ◦ b) · x = a(·(b · x) by definition of action. Since b · x = x, this becomes
(a ◦ b) · x = a(·(b · x)) = a · x; and since a · x = x, we conclude that (a ◦ b) · x = x. Thus
a ◦ b ∈ Stab(x).

(c) if a ∈ Stab(x), then a−1 ∈ Stab(x). For this, take arbitrary a ∈ Stab(x). This means
a · x = x. Apply a−1 to both sides to get a−1 · (a · x) = a−1 · x. By definition of action,
a−1 · (a · x) = (a−1 ◦ a) · x = e · x = x. So we have a−1 · x = x, and a−1 ∈ Stab(x).
QED.

(2) This is clear: |O(x)| divides |G| since |G| = |O(x)| × |Stab(x)|.
(3) Since 17 is prime, the only divisors of |G| are 1 and 17. So any orbit of any G action can only have

size 1 or 17. Since in this case, X has only 16 points total, no orbit can have 17 points! So all orbits
have one point. This means g · x = x for all g and all x. The only such action is the trivial action.

C. SYMMETRY GROUPS OF PLATONIC SOLIDS. There are exactly five convex regular solid figures in R3.

Each is constructed by congruent regular
polygonal faces with the same number of
faces meeting at each vertex. The chart de-
scribes each of these platonic solids. Each
platonic solid has a symmetry group which
acts naturally on the solid. In particular, each
symmetry group also acts on the set of ver-
tices, the set of edges and the set of faces, of
the corresponding solid. By analyzing these
three actions, we can better understand the
symmetry group of each solid.

For each of the 5 platonic solids, complete the following chart:

Action # orbit # stab |G|
on Faces
on edges

on vertices

For each of the three actions, does it matter which point x ∈ X (i.e., which face, edge, or vertex) you use to
compute the orbit? Why is the order of the stabilizer the same for each x ∈ X in each of the three actions? Is
this true in general for a group acting on a set? What is special in this case?

Solution.
(1) For the symmetry group of the cube, we have:



Action # orbit # stab |G|
on Faces 6 4 24
on edges 12 2 24

on vertices 8 3 24

(2) For the symmetry group of the tetrahedron we have:
Action # orbit # stab |G|

on Faces 4 3 12
on edges 6 2 12

on vertices 4 3 12

Note that here, it is a bit tricky to find the stabilizer of an edge, but since we know there are 2
elements in the stabilizer from the Orbit-Stabilizer theorem, we can look.

(3) For the Octahedron, we have
Action # orbit # stab |G|

on Faces 8 3 24
on edges 12 2 24

on vertices 6 4 24

(4) For the symmetry group of the dodecahedron, we have:
Action # orbit # stab |G|

on Faces 12 5 60
on edges 30 2 60

on vertices 20 3 60

(5) For the symmetry group of the icosahedron, we have:
Action # orbit # stab |G|

on Faces 20 3 60
on edges 30 2 60

on vertices 12 5 60

D. Consider the group Cube of symmetries of the cube.

(1) Observe that Cube acts on the set of 4 diagonals (from one vertex to its opposite) of the cube.
(2) Show that this action is faithful.1

(3) Show that Cube is isomorphic to S4.2

(4) Conclude that the orders of the elements in Cube are exactly 1, 2, 3, 4, and that Cube is generated by
two elements.

Solution.
(1) A symmetry must take a diagonal to a diagonal; it is clear that this is compatible with composition.

1Hint: Label the diagonals as 1, 2, 3, 4. Note that every face has one vertex on each diagonal. For each face, list the diagonal of
each vertex, conterclockwise, starting with 1. Note that each face has a different list.

2Hint: Use the homomorphism ad : G→ Bij(X) from the last worksheet.



(2) Following the hint, once we label the diagonals, every face is determined by the order in which the
diagonals meet its vertices. Thus, if an element of the group fixes all four diagonals, then it fixes all
of the faces, so it can only be the identity.

(3) By the last part, we obtain an injective homomorphism from Cube to S4. Since these groups have
the same order, this map must be bijective.

(4) This follows from the fact that these statements hold in S4.

E. THE PROOF OF THE ORBIT-STABILIZER THEOREM: Let G act on X . Fix a point x ∈ X .

(1) Show that there is a surjective map of sets G→ O(x) sending each g ∈ G to g · x.
(2) Show that g and h have the same image under this map if and only if g−1h ∈ Stab(x).
(3) For each g · x ∈ O(x), show that the set of elements in G mapping to g · x is the left coset gK where

K = Stab(x).
(4) Show that this map induces a bijection between the set G/Stab(x) of left cosets of Stab(x) in G and

the orbit O(x).
(5) Prove the Orbit Stabilizer Theorem.

Solution.
(1) Given any y ∈ O(x), y = g · x for some g, so y is in the image of our map.
(2) Given any g, h ∈ G, g · x = h · x if and only if x = (g−1h) · x, or equivalently g−1h ∈ Stab(x).
(3) Given g ∈ O(x), we have shown that for each h ∈ G, h · x = g · x if and only if h−1g ∈ Stab(x),

which is equivalent to g ∈ hK. Since the left cosets form a partition, this is the same as h ∈ gK.
(4) We have already showed that two elements g and h have the same image if and only if gK = hK.

This means that the map G/Stab(x) −→ O(x) given by gStab(x) 7→ g · x is well-defined and
injective. As in par (1), this map is surjective.

(5) Our bijection shows that |O(x)| = [G : Stab(x)]. The Orbit-Stabilizer theorem now follows by
Lagrange’s Theorem.

F. LINEAR ACTIONS. Consider the action of GL2(R) on R2 by matrix multiplication (where elements of R2

are written as columns).

(1) Describe the action in mathematical symbols and prove it is really an action.

(2) What is the stabilizer of the point
[
1
0

]
?

(3) What is the orbit of the point
[
1
0

]
?

Solution.

(1) For A ∈ GL2(R) and
[
x
y

]
∈ R2, we have A ·

[
x
y

]
= A

[
x
y

]
. It is an action because I2

[
x
y

]
=

[
x
y

]
and A · (B ·

[
x
y

]
) = A(B

[
x
y

]
) = (AB)

[
x
y

]
, by the associativity of matrix multiplication. So the

two axioms of a group action are satisfied.

(2) What A =

[
a b
c d

]
stabilize

[
1
0

]
? Since

[
a b
c d

] [
1
0

]
=

[
a
c

]
, a necessary and sufficient condition is

that
[
a
c

]
=

[
1
0

]
. So the stabilizer of

[
1
0

]
is the subgroup of matrices {

[
1 b
0 d

]
| b, d,∈ R}.



(3) The orbit of
[
1
0

]
under matrix multiplication is R2\~0. Indeed, we can get an arbitrary non-zero

[
x
y

]
by multiplying

[
x b
y d

] [
1
0

]
=

[
x
y

]
. Note that as long as

[
x
y

]
is not the zero vector, we can always

find b, d ∈ R such that the matrix
[
x b
y d

]
is invertible.

G. SYMMETRY GROUPS OF PLATONIC SOLIDS AGAIN.
(1) Show that the symmetry group of the tetraheadron is isomorphic to A4.
(2) Show that the symmetry group of the octaheadron is isomorphic to S4.
(3) Can you compute the symmetry groups of the dodecahedron and the icosahedron?

Solution.
(1) Inspired by our calculation of the symmetry group of the cube, we look for a set of four elements

for this group to act on. An obvious choice is the set of faces. It is clear that this action is faithful:
if a symmetry of the tetrahedron fixes all fo the faces, it fixes the whole tetrahedron. We then get
an injective homomorphism from Tet ↪→ S4. We know |Tet| = 12 and |S4| = 24, so this is not
surjective.

We can show directly that the image consists of even permutations. For each vertex, there are
two 120◦ rotations. These fix one face and cycle around the others, so these give the 8 three cycles.
Also, there are three 180◦ rotations that switch two pairs of faces. These are the three pairs of
disjoint 2-cycles. This plus the identity makes for all twelve elements.

(2) The argument is similar to that for the cube, except let Oct act on the set of pairs of opposite faces
of the octahedron. We challenge you to fill in the details!

(3) Let’s start with the icosahedron. We want to show that the symmetry group is isomorphic to A5 by
cleverly having our symmetry group act on a set of five elements. The key geometric insight we will
use is the following: any collection of six edges such that no pair shares a vertex must be the same
up to symmetry—if it contains an edge e, it contains its opposite edge e′, as well as the two other
edges that are parallel to the plane P containing e and e′, and the two edges that are perpendicular
to P . We note also that such a set of edges has the property that every vertex meets exactly one
of these edges. Let’s call this set of edges the minimal spanning set determined by e, denoted [e].
Since any edge is in exactly one of these, the minimal spanning sets form a partition of the set of
edges. That is, “minimal spanning sets” partition the edge set into five subsets [a], [b], [c], [d], [e]
that each contain six edges.



We can think of the minimal edge sets as colors, like in the picture above.
Now, if we have any symmetry of the icosahedron, it must take a set of six edges such that no pair

shares a vertex to another set of six edges such that no pair shares a vertex. That is, the symmetry
group of the icosahedron acts on the set of minimal spanning sets.

We claim that this action is faithful. One way to see this is as follows. For any vertex, look at
the edges that meet it. Read off the minimal spanning set of each edge, starting at the edge in [a]
and going clockwise. That is, for each vertex, we get a sequence like [a], [d], [b], [e], [c]. Dropping
brackets, I got

{abcde, abdec, abecd, acbed, acdbe, acedb, adbce, adceb, adebc, aebdc, aecbd, aedcb},
which in particular are distinct. Thus, if a symmetry fixes all of the sets {[a], [b], [c], [d], [e]}, it must
fix each vertex (since you can solve for a vertex from its sequence in that list), and thus fix the
whole solid.

Now, since we have a faithful action, the adjoint homomorphism from the icosahedron group to
S5 (the symmetries of a set of five elements) is injective, so the icosahedron group is isomorphic to
the image of this homomorphism. We need to compute the image.

Let’s try to compute the image. For each face, look at the minimal spanning sets of the edges that
meet the face. If we do this, we see that every combination of three minimal spanning sets occurs in
exactly two faces. Now consider what happens if you rotate around face: say the minimal spanning
sets of its edges are [a], [b], [c]. If you rotate around, the a-edge goes to the b-edge, the b-edge goes
to the c-edge, and the c-edge goes to the a-edge. Looking beyond the face, you can track that a
[d]-edge goes to another [d]-edge and a [e]-edge goes to another [e]-edge. (It suffices to check just
one other edge actually! Why?) Thus, the adjoint of this symmetry is the 3-cycle (a b c). Since we
can find all triples on a face, and we can square each 3-cycle, we obtain all 20 3-cycles this way.

Now we remember that the 3-cycles in S5 generate A5 (from the quiz, or if you didn’t do that,
from a little later in the textbook, in section 8.5). Thus, the image of our homomorphism, which is
a subgroup of S5 containing all the 3-cycles, must contain A5. But the image has order 60, and so
does A5, so the image must be equal to A5. QED.

For the dodecahedron, we claim that its symmetry group is isomorphic to that of the icosahedron.
This is because they are “dual solids.” That is, if you take the center of each face of an icosahe-
dron, and connect those, you get a dodecahedron. Any symmetry of an icosahedron then yields a
symmetry of a dodecahedron, and conversely.

H. REPRESENTATIONS OF A GROUP. A REPRESENTATION of a group G on a vector space V is a group
homomorphism G −→ GL(V ) to the set of bijective linear transformations V −→ V .

(1) Explain why a group representation is equivalent to an action of G on V where for each g ∈ G, ad(g)
is a linear transformation.

(2) Show that a group representation is a faithful action if and only if G −→ GL(V ) is injective.
(3) Give an example of a representation of Dn on R2.

Solution.
(1)
(2) We have shown this in the previous worksheet in a more general setting.
(3) We have essentially already seen this example in Problem Set 8:

r 7→
(
cos(2π

n
) − sin(2π

n
)

sin(2π
n
) cos(2π

n
)

)
and send the reflection about the y-axis to

(
−1 0
0 1

)
.


