Math 412. Adventure sheet on more rings

DEFinition:

- A domain is a commutative ring R in which $0_{R} \neq 1_{R}$, and that has the property that whenever $a b=0$ for $a, b \in R$, then either $a=0$ or $b=0$.
- A field is a commutative ring R in which $0_{R} \neq 1_{R}$ and every nonzero element has a multiplicative inverse.
- A subring S of a ring R as a subset which is a also a ring with the same,$+ \times, 0$ and 1 . Caution! This definition differs from the book's because they do not assume rings contain a multiplicative identity!

Definition: Fix a commutative ring R.

- The polynomial ring over R is the set

$$
R[x]=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{i} \in R, n \in \mathbb{N}\right\}
$$

with operations + and \times extended from those on the coefficients in R in the natural way.

- The ring of $n \times n$ matrices over R is the set $M_{n}(R)$ of $n \times n$ matrices with coefficients in R, with "matrix addition" and "matrix multiplication" as + and \times.
A. WARM-UP: For each inclusion $S \subseteq R$, decide whether or not S is a subring of R.
(1) $\mathbb{N} \subseteq \mathbb{Z}$.
(2) The set of even integers $S=\{2 n \mid n \in \mathbb{Z}\} \subseteq \mathbb{Z}$.
(3) $\mathbb{R}[x] \subseteq \mathbb{R}(x):=\left\{\left.\frac{f(x)}{g(x)} \right\rvert\, f(x), g(x) \in \mathbb{R}[x], g \neq 0\right\}$. ${ }^{1}$
(4) The set of diagonal matrices:

$$
D:=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\} \subseteq M_{2}(\mathbb{R}) .
$$

(5) The set of integer matrices $M_{2}(\mathbb{Z}) \subseteq M_{2}(\mathbb{R})$.
(6) The set of invertible real matrices

$$
G L_{2}(\mathbb{R})=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a d-b c \neq 0, \text { and } a, b, c, d \in \mathbb{R}\right\} \subseteq M_{2}(\mathbb{R})
$$

(7) Given a ring R, the set of constant polynomials $R \subseteq R[x]$.
(8) The set of polynomials with integer coefficients $\mathbb{Z}[x] \subseteq \mathbb{R}[x]$.
(9) $\mathbb{Z} \subseteq \mathbb{Z}[i]$
(10) The imaginary integers $\mathbb{Z} i=\{n i \mid n \in \mathbb{Z}\} \subseteq \mathbb{Z}[i]$.

Solution.

(1) No, no additive inverses.
(2) No. missing multiplicative identity.
(3) Yes.
(4) yes.
(5) yes.
(6) No, no zero.
(7) Yes.
(8) Yes.

[^0](9) Yes.
(10) No, no 1.

B. Find an example of:

(1) A noncommutative ring with a commutative subring.
(2) An infinite ring with a finite subring.
(3) A field that has a subring that is not a field.

Solution.

(1) A6 above
(2) Example 1: $\mathbb{Z}_{n} \subseteq \mathbb{Z}_{n}[x]$

Example 2: $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \cdots$
(3) $\mathbb{Z} \subseteq \mathbb{Q}$
C. Let $R=M_{2}\left(\mathbb{Z}_{2}\right)$ be the ring of 2×2 matrices over \mathbb{Z}_{2}.
(1) What are 0_{R} and 1_{R} ?
(2) How many elements are in R ?
(3) Is R commutative?
(4) Show that $r+r=0_{R}$ for every element $r \in R$.

Solution.

(1) $0_{R}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], 1_{R}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
(2) $2^{4}=16$
(3) No:

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

(4) This follows from the fact that this is true in every entry of a matrix in \mathbb{Z}_{2}.

D. Basic Proofs.

(1) Let R be a ring, and suppose that $0_{R}=1_{R}$. Show that $R=\left\{0_{R}\right\}$ is the ring with one element.
(2) Prove that every field is a domain.
(3) Prove that a subring of a field is a domain. Is the converse true?
(4) Let S be a subset of a ring R. Prove that S is a subring if and only if the inclusion map $S \hookrightarrow R$ sending $s \mapsto s$ is a ring homomorphism. Think carefully about the meaning of the symbols you are using in different contexts.
(5) Show that if R is a domain, and $x, y, z \in R$, then $x y=x z$ and $x \neq 0$ implies $y=z$.

Solution.

(1) It suffices to show that for any $r \in R, r=0_{R}$. Since $r=r 1_{R}=r 0_{R}=0_{R}$, this is so.
(2) Let \mathbb{F} be a field. Assume $a, b \in \mathbb{F}$ satisfy $a b=0$ but $a \neq 0$. Multiplication on the left by a^{-1} gives $a^{-1}(a b)=\left(a^{-1} a\right) b=1 \cdot b=b=0$. QED.
(3) It is clear that a subring of a domain is a domain: assume $a, b \in S \subset R$, where R is a domain, and $a b=0$ in S. This also holds in the bigger ring R, so $a=0_{R}$ or $b=0_{R}$, since R is a a domain. Since $0_{R}=0_{S}$, it follows that S is a domain too.
(4) Call the inclusion map ϕ. First, assume $S \subset R$ is a subring. We need to prove ϕ is a ring homomorphism. Since the 1 in R is the 1 of S, we know $\phi\left(1_{S}\right)=1_{R}$. Also since ϕ is the inclusion map, $\phi\left(s_{1}+s_{2}\right)=s_{1}+s_{2}=\phi\left(s_{1}\right)+\phi\left(s_{2}\right)$. Ditto for muiltiplication. So ϕ is a ring homomorphism. Conversely, assume that $\phi: S \hookrightarrow R$ is a ring homomorphism. In particular S is a ring. Then $1_{S}=\phi\left(1_{S}\right)=1_{R}$, so S and R have the same identity. Also $\phi\left(s_{1}+{ }_{S} s_{2}\right)=\phi\left(s_{1}\right)+_{R} \phi\left(s_{2}\right)=$ $s_{1}+_{R} s_{2}$. This is in S, since it is in the image of $s_{1}+s s_{2}$ under ϕ. So S is closed under the multiplication of R. Similarly, S is closed under the multiplication of R. Finally, for all $s \in$, we have $s+{ }_{R}-s=0_{S}$ using the addition in S. Applying ϕ, we have $\phi\left(s+{ }_{R}-s\right)=\phi\left(0_{S}\right)$, which means that $\phi(s)+_{R} S \phi(-s)=0_{R}$.
(5) Let R be a domain. $x y=x z$ implies $x y-x z=0$, so $x(y-z)=0$ by the distributive property. It follows from the definition of domain that $y-z=0$, so $y=z$.

THEOREM 4.3: The polynomial $R[x]$ is a domain if and only if R is a domain.
THEOREM 4.5: For any domain R, the units in $R[x]$ are the units in the subring R of constant polynomials. In particular, if \mathbb{F} is a field, then the units in $\mathbb{F}[x]$ are the nonzero constant polynomials.
E. Polynomial ring practice. Use Theorem 4.3 and 4.5 above where appropriate.
(1) In $\mathbb{Z}_{8}[x]$, consider $f=(1+3 x)$ and $g=\left(2 x^{2}+4 x^{3}\right)$. Compute and simplify $f+4 g$ and $(3 x)^{3}+g$. We abuse notation by representing congruence classes by any integer representative.
(2) How many polynomials of degree less than 3 are there in the ring $\mathbb{Z}_{2}[x]$?
(3) How many units are there in $\mathbb{Z}[x]$?
(4) Suppose that $f \in \mathbb{Q}[x]$ has degree 5 . Find the degrees of the following polynomials: $f-x, f^{2}, f+4 x^{51}, f-2 x^{5},\left(x^{2}+1\right) f^{3}$.
(5) Does $x^{2}+1$ have a multiplicative inverse in $\mathbb{Z}_{2}[x]$?
(6) In $\mathbb{Z}_{8}[x]$, compute $(1+4 x)(1-4 x)$. Is the hypothesis that R is a domain necessary in Theorem 4.5?

Solution.

(1) $f+4 g=1+3 x .3 x^{3}+g=7 x^{3}+2 x^{2}$.
(2) $2^{3}=8$
(3) By the theorem, the only units are the units in \mathbb{Z}, which are ± 1.
(4) 5, 51, not enough information, 17
(5) No, it is not a unit by the theorem.
(6) It is 1 ! Yes, the hypothesis of domain is necessary.
F. Proof of Theorem 4.5. Let R be a domain. Consider R as the subring of $R[x]$ of constant polynomials.
(1) Show that any unit in R is a unit in $R[x]$.
(2) Explain why, for any $f, g \in R[x], \operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g$. What if R is not a domain?
(3) Prove that if $f \in R[x]$ is a unit, then f is a constant polynomial.
(4) Prove Theorem 4.5.
(5) Find a formula for the number of units in $\mathbb{Z}_{p}[x]$ where p is prime.

Solution.

(1) There is some $s \in R$ such that $r s=1$. This s also lives in $R[x]$, and is an inverse for r there.
(2) Whether R is a domain or not, $\operatorname{deg}(f g) \leq \operatorname{deg} f+\operatorname{deg} g$ always holds, since when we expand the product $f g$, we can only get terms of degree at most $\operatorname{deg} f+\operatorname{deg} g$. If R is a domain, and $f, g \neq 0$, let $f=a x^{\operatorname{deg} f}+f^{\prime}$ and $g=b x^{\operatorname{deg} g}+g^{\prime}$, where $\operatorname{deg} f^{\prime}<\operatorname{deg} f, \operatorname{deg} g^{\prime}<\operatorname{deg} g$, and $a, b \neq 0$. Then $f g=a b x^{\operatorname{deg} f+\operatorname{deg} g}+$ lower degree terms, so $\operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g$. If R was not a domain, we could have had $a b=0$. E6 is an explicit example.
(3) If f is a unit, there is some g such that $f g=1$. Since $\operatorname{deg} 1=0$, and $\operatorname{deg} f+\operatorname{deg} g=\operatorname{deg} f g=0$, we must have $\operatorname{deg} f=0$.
(4) We have already shown one implication in part 1 . For the other, if f is a unit in $R[x]$, then $f \in R$ by part 3. If $f g=1$, then g is also a unit, hence also a constant. Thus, f is a constant with a constant inverse, so is a unit in R.
(5) The units are exactly the units of \mathbb{Z}_{p}, which are the nonzero elements of \mathbb{Z}_{p}, of which there are exactly $p-1$.

[^0]: ${ }^{1} \mathbb{R}(x)$ is the ring of rational functions.

