Math 412. Adventure sheet on more rings

DEFINITION:

e A domain is a commutative ring R in which Oz # 1g, and that has the property that
whenever ab = 0 for a,b € R, then either a = 0 or b = 0.

e A field is a commutative ring R in which O # 1y and every nonzero element has a
multiplicative inverse.

e A subring S of a ring R as a subset which is a also a ring with the same +, x,0
and 1. Caution! This definition differs from the book’s because they do not assume
rings contain a multiplicative identity!

DEFINITION: Fix a commutative ring R.
e The polynomial ring over R is the set
Rlz] ={ay+ @z +---+a2"|a; € R,n € N},

with operations + and x extended from those on the coefficients in R in the natural
way.

e The ring of n x n matrices over R is the set M,,(R) of n x n matrices with coeffi-
cients in R, with “matrix addition” and “matrix multiplication” as + and Xx.

A. WARM-UP: For each inclusion S C R, decide whether or not S is a subring of R.
(1) NCZ.
(2) The set of even integers S = {2n | n € Z} C Z.
(3) Rle] CR(2) = {18 |f(2), g(x) € Rla],g # 0}
(4) The set of diagonal matrices:

D:{k;%|aﬁ€R}ngw
(5) The set of integer matrices My(Z) C Ms(R).
(6) The set of invertible real matrices

GLy(R) = {{? Z] | ad —bc # 0, and a,b, c,d € R} C My(R).

(7) Given aring R, the set of constant polynomials R C R[z].
(8) The set of polynomials with integer coefficients Z[x] C R[z].
) Z C Z][i]

(10) The imaginary integers Zi = {ni | n € Z} C Z[i].

Solution.

(1) No, no additive inverses.

(2) No. missing multiplicative identity.
(3) Yes.

(4) yes.

(5) yes.

(6) No, no zero.

(7) Yes.

(8) Yes.

R () is the ring of rational functions.



9) Yes.
(10) No, no 1.

B. FIND AN EXAMPLE OF:

(1) A noncommutative ring with a commutative subring.
(2) An infinite ring with a finite subring.
(3) A field that has a subring that is not a field.

Solution.
(1) A6 above
(2) Example 1: Z,, C Z,[z]
Example 2: Zo X Zg X - - -
3)ZCQ

C. Let R = M5(7Z5) be the ring of 2 x 2 matrices over Zs.

(1) What are Og and 15?
(2) How many elements are in R?
(3) Is R commutative?

(4) Show that r + r = Op for every element r € R.

Solution.
0 0 1 0
(1) Og = [0 0},11%: [O 1}
(2) 24 =16
(3) No:

o of[v o] =l ol o 2l =[3 ol o ol

(4) This follows from the fact that this is true in every entry of a matrix in Z.

D. BASIC PROOFS.
(1) Let R be a ring, and suppose that 0 = 1z. Show that R = {Og} is the ring with one
element.
(2) Prove that every field is a domain.
(3) Prove that a subring of a field is a domain. Is the converse true?
(4) Let S be a subset of a ring R. Prove that S is a subring if and only if the inclusion map

S — R sending s — s is a ring homomorphism. Think carefully about the meaning of
the symbols you are using in different contexts.

(5) Show that if R is a domain, and z, ¥, 2 € R, then zy = xz and x # 0 implies y = z.

Solution.

(1) It suffices to show that for any » € R, r = Og. Since r = rlg = rOg = Og, this is so.

(2) Let F be a field. Assume a,b € F satisfy ab = 0 but @ # 0. Multiplication on the left by a~! gives
a~t(ab) = (a~ta)b =1-b=b=0.QED.

(3) Itis clear that a subring of a domain is a domain: assume a,b € S C R, where R is a domain, and

ab = 01in S. This also holds in the bigger ring R, so a« = O or b = O, since R is a a domain. Since
Or = 0Og, it follows that .S is a domain too.




(4) Call the inclusion map ¢. First, assume S C R is a subring. We need to prove ¢ is a ring homo-
morphism. Since the 1 in R is the 1 of .S, we know ¢(1g) = 1g. Also since ¢ is the inclusion map,
(51 + s2) = 81+ 52 = ¢(s1) + ¢(s2). Ditto for muiltiplication. So ¢ is a ring homomorphism.
Conversely, assume that ¢ : S — R is a ring homomorphism. In particular S is a ring. Then
1ls = ¢(1g) = 1R, so S and R have the same identity. Also ¢(s1 +g s2) = ¢(s1) +r ¢(s2) =
$1 +r S2. This is in S, since it is in the image of s; +g s2 under ¢. So S is closed under the
multiplication of R. Similarly, S is closed under the multiplication of R. Finally, for all s €, we
have s +r —s = 0Og using the addition in S. Applying ¢, we have ¢(s +r —s) = ¢(0g), which
means that ¢(s) +r S¢(—s) = Og.

(5) Let R be a domain. zy = xz implies xy — xz = 0, so x(y — z) = 0 by the distributive property. It
follows from the definition of domain thaty — z = 0, soy = z.

THEOREM 4.3: The polynomial R[z] is a domain if and only if R is a domain.

THEOREM 4.5: For any domain R, the units in R[z| are the units in the subring R of
constant polynomials. In particular, if F is a field, then the units in F[z] are the nonzero
constant polynomials.

E. POLYNOMIAL RING PRACTICE. Use Theorem 4.3 and 4.5 above where appropriate.

(1) In Zg|z], consider f = (1 + 3z) and g = (22% + 423). Compute and simplify f + 4g
and (3z)3 + g. We abuse notation by representing congruence classes by any integer
representative.

(2) How many polynomials of degree less than 3 are there in the ring Z[z|?

(3) How many units are there in Z[z]?

(4) Suppose that f € Qx| has degree 5. Find the degrees of the following polynomials:
f—a f2 f+ 425t f — 225, (2% + 1) f3.

(5) Does x2 + 1 have a multiplicative inverse in Zy[z]?

(6) In Zg|x], compute (1 + 4x)(1 — 4x). Is the hypothesis that R is a domain necessary in

Theorem 4.5?
Solution.
(1) f+4g=1+3x. 323 + g = T3 + 222,
2) 22 =38

(3) By the theorem, the only units are the units in Z, which are +1.
(4) 5,51, not enough information, 17

(5) No, it is not a unit by the theorem.

(6) Itis 1! Yes, the hypothesis of domain is necessary.

F. PROOF OF THEOREM 4.5. Let R be a domain. Consider R as the subring of R[xz] of constant
polynomials.

(1) Show that any unit in R is a unit in R|x].

(2) Explain why, for any f, g € R[z], deg(fg) = deg f +deg g. What if R is not a domain?
(3) Prove that if f € R[z]is a unit, then f is a constant polynomial.

(4) Prove Theorem 4.5.

(5) Find a formula for the number of units in Z,[x] where p is prime.



Solution.

(1) There is some s € R such that rs = 1. This s also lives in R[z], and is an inverse for r there.

(2) Whether R is a domain or not, deg(fg) < deg f + deg g always holds, since when we expand the
product fg, we can only get terms of degree at most deg f + deg g. If R is a domain, and f, g # O,
let f = axd®s/ + " and g = bxd°89 4 ¢/, where deg f’ < deg f, degg’ < degg, and a,b # 0.
Then fg = abxd°s /1489 1 Jower degree terms, so deg fg = deg f +deg g. If R was not a domain,
we could have had ab = 0. E6 is an explicit example.

(3) If f is a unit, there is some g such that fg = 1. Since deg1 = 0, and deg f + degg = deg fg = 0,
we must have deg f = 0.

(4) We have already shown one implication in part 1. For the other, if f is a unit in R[z], then f € R by
part 3. If fg = 1, then ¢ is also a unit, hence also a constant. Thus, f is a constant with a constant
inverse, so is a unit in R.

(5) The units are exactly the units of Z,, which are the nonzero elements of Z,, of which there are
exactly p — 1.




