
Math 412. Adventure sheet on more rings

DEFINITION:
• A domain is a commutative ring R in which 0R ∕= 1R, and that has the property that

whenever ab = 0 for a, b ∈ R, then either a = 0 or b = 0.
• A field is a commutative ring R in which 0R ∕= 1R and every nonzero element has a

multiplicative inverse.
• A subring S of a ring R as a subset which is a also a ring with the same +,×, 0

and 1. Caution! This definition differs from the book’s because they do not assume
rings contain a multiplicative identity!

DEFINITION: Fix a commutative ring R.
• The polynomial ring over R is the set

R[x] = {a0 + a1x+ · · ·+ anx
n | ai ∈ R, n ∈ N},

with operations + and × extended from those on the coefficients in R in the natural
way.

• The ring of n× n matrices over R is the set Mn(R) of n× n matrices with coeffi-
cients in R, with “matrix addition” and “matrix multiplication” as + and ×.

A. WARM-UP: For each inclusion S ⊆ R, decide whether or not S is a subring of R.
(1) N ⊆ Z.
(2) The set of even integers S = {2n | n ∈ Z} ⊆ Z.
(3) R[x] ⊆ R(x) :=

󰁱
f(x)
g(x)

|f(x), g(x) ∈ R[x], g ∕= 0
󰁲

.1

(4) The set of diagonal matrices:

D :=

󰀝󰀗
a 0
0 b

󰀘
| a, b ∈ R

󰀞
⊆ M2(R).

(5) The set of integer matrices M2(Z) ⊆ M2(R).
(6) The set of invertible real matrices

GL2(R) =
󰀝󰀗

a b
c d

󰀘
| ad− bc ∕= 0, and a, b, c, d ∈ R

󰀞
⊆ M2(R).

(7) Given a ring R, the set of constant polynomials R ⊆ R[x].
(8) The set of polynomials with integer coefficients Z[x] ⊆ R[x].
(9) Z ⊆ Z[i]

(10) The imaginary integers Zi = {ni | n ∈ Z} ⊆ Z[i].

Solution.
(1) No, no additive inverses.
(2) No. missing multiplicative identity.
(3) Yes.
(4) yes.
(5) yes.
(6) No, no zero.
(7) Yes.
(8) Yes.

1R(x) is the ring of rational functions.
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(9) Yes.
(10) No, no 1.

B. FIND AN EXAMPLE OF:

(1) A noncommutative ring with a commutative subring.
(2) An infinite ring with a finite subring.
(3) A field that has a subring that is not a field.

Solution.
(1) A6 above
(2) Example 1: Zn ⊆ Zn[x]

Example 2: Z2 × Z2 × · · ·
(3) Z ⊆ Q

C. Let R = M2(Z2) be the ring of 2× 2 matrices over Z2.

(1) What are 0R and 1R?
(2) How many elements are in R?
(3) Is R commutative?
(4) Show that r + r = 0R for every element r ∈ R.

Solution.
(1) 0R =

󰀗
0 0
0 0

󰀘
, 1R =

󰀗
1 0
0 1

󰀘
.

(2) 24 = 16
(3) No: 󰀗

0 1
0 0

󰀘 󰀗
0 0
1 0

󰀘
=

󰀗
1 0
0 0

󰀘
∕=

󰀗
0 0
0 1

󰀘
=

󰀗
0 0
1 0

󰀘 󰀗
0 1
0 0

󰀘
.

(4) This follows from the fact that this is true in every entry of a matrix in Z2.

D. BASIC PROOFS.

(1) Let R be a ring, and suppose that 0R = 1R. Show that R = {0R} is the ring with one
element.

(2) Prove that every field is a domain.
(3) Prove that a subring of a field is a domain. Is the converse true?
(4) Let S be a subset of a ring R. Prove that S is a subring if and only if the inclusion map

S ↩→ R sending s 󰀁→ s is a ring homomorphism. Think carefully about the meaning of
the symbols you are using in different contexts.

(5) Show that if R is a domain, and x, y, z ∈ R, then xy = xz and x ∕= 0 implies y = z.

Solution.
(1) It suffices to show that for any r ∈ R, r = 0R. Since r = r1R = r0R = 0R, this is so.
(2) Let F be a field. Assume a, b ∈ F satisfy ab = 0 but a ∕= 0. Multiplication on the left by a−1 gives

a−1(ab) = (a−1a)b = 1 · b = b = 0. QED.
(3) It is clear that a subring of a domain is a domain: assume a, b ∈ S ⊂ R, where R is a domain, and

ab = 0 in S. This also holds in the bigger ring R, so a = 0R or b = 0R, since R is a a domain. Since
0R = 0S , it follows that S is a domain too.
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(4) Call the inclusion map φ. First, assume S ⊂ R is a subring. We need to prove φ is a ring homo-
morphism. Since the 1 in R is the 1 of S, we know φ(1S) = 1R. Also since φ is the inclusion map,
φ(s1 + s2) = s1 + s2 = φ(s1) + φ(s2). Ditto for muiltiplication. So φ is a ring homomorphism.
Conversely, assume that φ : S ↩→ R is a ring homomorphism. In particular S is a ring. Then
1S = φ(1S) = 1R, so S and R have the same identity. Also φ(s1 +S s2) = φ(s1) +R φ(s2) =
s1 +R s2. This is in S, since it is in the image of s1 +S s2 under φ. So S is closed under the
multiplication of R. Similarly, S is closed under the multiplication of R. Finally, for all s ∈, we
have s +R −s = 0S using the addition in S. Applying φ, we have φ(s +R −s) = φ(0S), which
means that φ(s) +R Sφ(−s) = 0R.

(5) Let R be a domain. xy = xz implies xy − xz = 0, so x(y − z) = 0 by the distributive property. It
follows from the definition of domain that y − z = 0, so y = z.

THEOREM 4.3: The polynomial R[x] is a domain if and only if R is a domain.

THEOREM 4.5: For any domain R, the units in R[x] are the units in the subring R of
constant polynomials. In particular, if F is a field, then the units in F[x] are the nonzero
constant polynomials.

E. POLYNOMIAL RING PRACTICE. Use Theorem 4.3 and 4.5 above where appropriate.

(1) In Z8[x], consider f = (1 + 3x) and g = (2x2 + 4x3). Compute and simplify f + 4g
and (3x)3 + g. We abuse notation by representing congruence classes by any integer
representative.

(2) How many polynomials of degree less than 3 are there in the ring Z2[x]?
(3) How many units are there in Z[x]?
(4) Suppose that f ∈ Q[x] has degree 5. Find the degrees of the following polynomials:

f − x, f 2, f + 4x51, f − 2x5, (x2 + 1)f 3.
(5) Does x2 + 1 have a multiplicative inverse in Z2[x]?
(6) In Z8[x], compute (1 + 4x)(1 − 4x). Is the hypothesis that R is a domain necessary in

Theorem 4.5?

Solution.
(1) f + 4g = 1 + 3x. 3x3 + g = 7x3 + 2x2.
(2) 23 = 8
(3) By the theorem, the only units are the units in Z, which are ±1.
(4) 5, 51, not enough information, 17
(5) No, it is not a unit by the theorem.
(6) It is 1! Yes, the hypothesis of domain is necessary.

F. PROOF OF THEOREM 4.5. Let R be a domain. Consider R as the subring of R[x] of constant
polynomials.

(1) Show that any unit in R is a unit in R[x].
(2) Explain why, for any f, g ∈ R[x], deg(fg) = deg f +deg g. What if R is not a domain?
(3) Prove that if f ∈ R[x] is a unit, then f is a constant polynomial.
(4) Prove Theorem 4.5.
(5) Find a formula for the number of units in Zp[x] where p is prime.
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Solution.
(1) There is some s ∈ R such that rs = 1. This s also lives in R[x], and is an inverse for r there.
(2) Whether R is a domain or not, deg(fg) ≤ deg f + deg g always holds, since when we expand the

product fg, we can only get terms of degree at most deg f + deg g. If R is a domain, and f, g ∕= 0,
let f = axdeg f + f ′ and g = bxdeg g + g′, where deg f ′ < deg f , deg g′ < deg g, and a, b ∕= 0.
Then fg = abxdeg f+deg g+ lower degree terms, so deg fg = deg f+deg g. If R was not a domain,
we could have had ab = 0. E6 is an explicit example.

(3) If f is a unit, there is some g such that fg = 1. Since deg 1 = 0, and deg f + deg g = deg fg = 0,
we must have deg f = 0.

(4) We have already shown one implication in part 1. For the other, if f is a unit in R[x], then f ∈ R by
part 3. If fg = 1, then g is also a unit, hence also a constant. Thus, f is a constant with a constant
inverse, so is a unit in R.

(5) The units are exactly the units of Zp, which are the nonzero elements of Zp, of which there are
exactly p− 1.


