DEFINITION:

- A **domain** is a commutative ring *R* in which 0_{*R*} ≠ 1_{*R*}, and that has the property that whenever *ab* = 0 for *a*, *b* ∈ *R*, then either *a* = 0 or *b* = 0.
- A field is a commutative ring R in which $0_R \neq 1_R$ and every nonzero element has a multiplicative inverse.
- A subring S of a ring R as a subset which is a also a ring with the same +, ×, 0 and 1. Caution! This definition differs from the book's because they do not assume rings contain a multiplicative identity!

DEFINITION: Fix a commutative ring R.

• The **polynomial ring over** R is the set

 $R[x] = \{a_0 + a_1 x + \dots + a_n x^n \,|\, a_i \in R, n \in \mathbb{N}\},\$

with operations + and \times extended from those on the coefficients in R in the natural way.

- The ring of $n \times n$ matrices over R is the set $M_n(R)$ of $n \times n$ matrices with coefficients in R, with "matrix addition" and "matrix multiplication" as + and \times .
- A. WARM-UP: For each inclusion $S \subseteq R$, decide whether or not S is a subring of R.
 - (1) $\mathbb{N} \subseteq \mathbb{Z}$.
 - (2) The set of even integers $S = \{2n \mid n \in \mathbb{Z}\} \subseteq \mathbb{Z}$.
 - (3) $\mathbb{R}[x] \subseteq \mathbb{R}(x) := \left\{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in \mathbb{R}[x], g \neq 0 \right\}.^1$
 - (4) The set of diagonal matrices:

$$D := \left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \mid a, b \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R}).$$

- (5) The set of integer matrices $M_2(\mathbb{Z}) \subseteq M_2(\mathbb{R})$.
- (6) The set of invertible real matrices

$$GL_2(\mathbb{R}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid ad - bc \neq 0, \text{ and } a, b, c, d \in \mathbb{R} \right\} \subseteq M_2(\mathbb{R}).$$

- (7) Given a ring R, the set of constant polynomials $R \subseteq R[x]$.
- (8) The set of polynomials with integer coefficients $\mathbb{Z}[x] \subseteq \mathbb{R}[x]$.
- (9) $\mathbb{Z} \subseteq \mathbb{Z}[i]$
- (10) The imaginary integers $\mathbb{Z}i = \{ni \mid n \in \mathbb{Z}\} \subseteq \mathbb{Z}[i]$.

B. FIND AN EXAMPLE OF:

- (1) A noncommutative ring with a commutative subring.
- (2) An infinite ring with a finite subring.
- (3) A field that has a subring that is not a field.
- C. Let $R = M_2(\mathbb{Z}_2)$ be the ring of 2×2 matrices over \mathbb{Z}_2 .
 - (1) What are 0_R and 1_R ?
 - (2) How many elements are in R?
 - (3) Is R commutative?
 - (4) Show that $r + r = 0_R$ for every element $r \in R$.

 $^{{}^{1}\}mathbb{R}(x)$ is the ring of rational functions.

D. BASIC PROOFS.

- (1) Let R be a ring, and suppose that $0_R = 1_R$. Show that $R = \{0_R\}$ is the ring with one element.
- (2) Prove that every field is a domain.
- (3) Prove that a subring of a field is a domain. Is the converse true?
- (4) Let S be a subset of a ring R. Prove that S is a subring if and only if the inclusion map S → R sending s → s is a ring homomorphism. Think carefully about the meaning of the symbols you are using in different contexts.
- (5) Show that if R is a domain, and $x, y, z \in R$, then xy = xz and $x \neq 0$ implies y = z.

THEOREM 4.3: The polynomial R[x] is a domain if and only if R is a domain.

THEOREM 4.5: For any domain R, the **units** in R[x] are the units in the subring R of constant polynomials. In particular, if \mathbb{F} is a field, then the units in $\mathbb{F}[x]$ are the nonzero constant polynomials.

- E. POLYNOMIAL RING PRACTICE. Use Theorem 4.3 and 4.5 above where appropriate.
 - (1) In $\mathbb{Z}_8[x]$, consider f = (1 + 3x) and $g = (2x^2 + 4x^3)$. Compute and simplify f + 4g and $(3x)^3 + g$. We abuse notation by representing congruence classes by any integer representative.
 - (2) How many polynomials of degree less than 3 are there in the ring $\mathbb{Z}_2[x]$?
 - (3) How many units are there in $\mathbb{Z}[x]$?
 - (4) Suppose that $f \in \mathbb{Q}[x]$ has degree 5. Find the degrees of the following polynomials: $f x, f^2, f + 4x^{51}, f 2x^5, (x^2 + 1)f^3$.
 - (5) Does $x^2 + 1$ have a multiplicative inverse in $\mathbb{Z}_2[x]$?
 - (6) In $\mathbb{Z}_8[x]$, compute (1 + 4x)(1 4x). Is the hypothesis that R is a domain necessary in Theorem 4.5?

F. PROOF OF THEOREM 4.5. Let R be a domain. Consider R as the subring of R[x] of constant polynomials.

- (1) Show that any unit in R is a unit in R[x].
- (2) Explain why, for any $f, g \in R[x]$, $\deg(fg) = \deg f + \deg g$. What if R is not a domain?
- (3) Prove that if $f \in R[x]$ is a unit, then f is a constant polynomial.
- (4) Prove Theorem 4.5.
- (5) Find a formula for the number of units in $\mathbb{Z}_p[x]$ where p is prime.