Math 412. Adventure sheet on more rings

DEFInITION:

- A domain is a commutative ring R in which $0_{R} \neq 1_{R}$, and that has the property that whenever $a b=0$ for $a, b \in R$, then either $a=0$ or $b=0$.
- A field is a commutative ring R in which $0_{R} \neq 1_{R}$ and every nonzero element has a multiplicative inverse.
- A subring S of a ring R as a subset which is a also a ring with the same,$+ \times, 0$ and 1 . Caution! This definition differs from the book's because they do not assume rings contain a multiplicative identity!

Definition: Fix a commutative ring R.

- The polynomial ring over R is the set

$$
R[x]=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{i} \in R, n \in \mathbb{N}\right\}
$$

with operations + and \times extended from those on the coefficients in R in the natural way.

- The ring of $n \times n$ matrices over R is the set $M_{n}(R)$ of $n \times n$ matrices with coefficients in R, with "matrix addition" and "matrix multiplication" as + and \times.
A. WARM-UP: For each inclusion $S \subseteq R$, decide whether or not S is a subring of R.
(1) $\mathbb{N} \subseteq \mathbb{Z}$.
(2) The set of even integers $S=\{2 n \mid n \in \mathbb{Z}\} \subseteq \mathbb{Z}$.
(3) $\mathbb{R}[x] \subseteq \mathbb{R}(x):=\left\{\left.\frac{f(x)}{g(x)} \right\rvert\, f(x), g(x) \in \mathbb{R}[x], g \neq 0\right\}$. ${ }^{1}$
(4) The set of diagonal matrices:

$$
D:=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\} \subseteq M_{2}(\mathbb{R}) .
$$

(5) The set of integer matrices $M_{2}(\mathbb{Z}) \subseteq M_{2}(\mathbb{R})$.
(6) The set of invertible real matrices

$$
G L_{2}(\mathbb{R})=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a d-b c \neq 0, \text { and } a, b, c, d \in \mathbb{R}\right\} \subseteq M_{2}(\mathbb{R})
$$

(7) Given a ring R, the set of constant polynomials $R \subseteq R[x]$.
(8) The set of polynomials with integer coefficients $\mathbb{Z}[x] \subseteq \mathbb{R}[x]$.
(9) $\mathbb{Z} \subseteq \mathbb{Z}[i]$
(10) The imaginary integers $\mathbb{Z} i=\{n i \mid n \in \mathbb{Z}\} \subseteq \mathbb{Z}[i]$.
B. Find an example of:
(1) A noncommutative ring with a commutative subring.
(2) An infinite ring with a finite subring.
(3) A field that has a subring that is not a field.
C. Let $R=M_{2}\left(\mathbb{Z}_{2}\right)$ be the ring of 2×2 matrices over \mathbb{Z}_{2}.
(1) What are 0_{R} and 1_{R} ?
(2) How many elements are in R ?
(3) Is R commutative?
(4) Show that $r+r=0_{R}$ for every element $r \in R$.

[^0]D. Basic Proofs.
(1) Let R be a ring, and suppose that $0_{R}=1_{R}$. Show that $R=\left\{0_{R}\right\}$ is the ring with one element.
(2) Prove that every field is a domain.
(3) Prove that a subring of a field is a domain. Is the converse true?
(4) Let S be a subset of a ring R. Prove that S is a subring if and only if the inclusion map $S \hookrightarrow R$ sending $s \mapsto s$ is a ring homomorphism. Think carefully about the meaning of the symbols you are using in different contexts.
(5) Show that if R is a domain, and $x, y, z \in R$, then $x y=x z$ and $x \neq 0$ implies $y=z$.

Theorem 4.3: The polynomial $R[x]$ is a domain if and only if R is a domain.
THEOREM 4.5: For any domain R, the units in $R[x]$ are the units in the subring R of constant polynomials. In particular, if \mathbb{F} is a field, then the units in $\mathbb{F}[x]$ are the nonzero constant polynomials.
E. Polynomial ring practice. Use Theorem 4.3 and 4.5 above where appropriate.
(1) In $\mathbb{Z}_{8}[x]$, consider $f=(1+3 x)$ and $g=\left(2 x^{2}+4 x^{3}\right)$. Compute and simplify $f+4 g$ and $(3 x)^{3}+g$. We abuse notation by representing congruence classes by any integer representative.
(2) How many polynomials of degree less than 3 are there in the ring $\mathbb{Z}_{2}[x]$?
(3) How many units are there in $\mathbb{Z}[x]$?
(4) Suppose that $f \in \mathbb{Q}[x]$ has degree 5. Find the degrees of the following polynomials: $f-x, f^{2}, f+4 x^{51}, f-2 x^{5},\left(x^{2}+1\right) f^{3}$.
(5) Does $x^{2}+1$ have a multiplicative inverse in $\mathbb{Z}_{2}[x]$?
(6) In $\mathbb{Z}_{8}[x]$, compute $(1+4 x)(1-4 x)$. Is the hypothesis that R is a domain necessary in Theorem 4.5?
F. Proof of Theorem 4.5. Let R be a domain. Consider R as the subring of $R[x]$ of constant polynomials.
(1) Show that any unit in R is a unit in $R[x]$.
(2) Explain why, for any $f, g \in R[x], \operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g$. What if R is not a domain?
(3) Prove that if $f \in R[x]$ is a unit, then f is a constant polynomial.
(4) Prove Theorem 4.5 .
(5) Find a formula for the number of units in $\mathbb{Z}_{p}[x]$ where p is prime.

[^0]: ${ }^{1} \mathbb{R}(x)$ is the ring of rational functions.

