Math 412 Midterm review problems

True or false. Justify!

- 1) In \mathbb{Z} , if $n = p_1 \cdots p_t = q_1 \cdots q_s$, for primes p_i, q_j , then s = t and $p_1 = q_1, \ldots, p_s = q_s$.
- 2) In general, the fastest way to find the gcd of two large integers is to factor them into primes.
- 3) The equation $[a]_n x = [b]_n$ has a solution in \mathbb{Z}_n if and only if gcd(a, n) = 1.
- 4) The system of equations 7|(x+3) and 11|(x-1) has a solution modulo 77.
- 5) The system of equations 3|x and 6|(x-1) has a solution modulo 18.
- 6) If n|a and m|a, then nm|a.
- 7) Given any ring R, there exists exactly one ring homomorphism $\mathbb{Z} \longrightarrow R$.
- 8) Given any ring R, there exists exactly one ring homomorphism $R \longrightarrow \mathbb{Z}$.
- 9) Given any ring R, there exists exactly one ring homomorphism $\mathbb{Z}_n \longrightarrow R$.
- 10) Given any ring R, there exists exactly one ring homomorphism $R \longrightarrow \mathbb{Z}_n$.
- 11) Every element in \mathbb{Z} is a unit.
- 12) The additive inverse of $[5]_{77}$ in \mathbb{Z}_{77} is $[149]_{77}$.
- 13) The multiplicative inverse of $[5]_{77}$ in \mathbb{Z}_{77} is $[108]_{77}$.
- 14) Every nonzero ring contains at least two ideals.
- 15) Every domain is a field.
- 16) Every field is a domain.
- 17) The zero ring is a domain.
- 18) There always exists a ring homomorphism between any two rings.
- 19) Any commutative ring that has only two ideals is a field.
- 20) The kernel of any ring homomorphism is an ideal.
- 21) The kernel of any ring homomorphism is a subring.
- 22) The image of any ring homomorphism is an ideal.
- 23) The image of any ring homomorphism is a subring.
- 24) If R is a commutative ring and (g) = R, then g is a unit.
- 25) If R is a domain, then R[x] is a domain.
- 26) If F is a field, then F[x] is a field.
- 27) If $p(x) \in \mathbb{Z}_2[x]$ has degree 3, then $\mathbb{Z}_2[x]$ has 4 elements.
- 28) If p(x) is irreducible, then gcd(p(x), f(x)) is 1 or p.
- 29) If F is a field, the remainder of dividing f(x) by x a is f(a).
- 30) Modern algebra is fun.

- 31) The ring $\mathbb{Z}_n[x]$ is a domain.
- 32) If f and g differ by a unit in F[x], where F is a field, then (f, g) = 1.
- 33) If uf + vg = 4 in $\mathbb{Q}[x]$, then f + (g) is a unit in $\mathbb{Q}[x]/(g)$.
- 34) In R[x], the product of two monic polynomials can be zero.
- 35) If F is a field, the map $F[x] \longrightarrow F$ sending each polynomial to its constant term is a ring homomorphism.
- 36) $x^3 + 2$ is a unit in $\mathbb{Z}_5[x]/(x^4 x^2)$.
- 37) The quotient ring $\mathbb{R}[x]/(x^3 x 6)$ is a field.
- 38) Every ideal is the kernel of some ring homomorphism.
- 39) Any subring of a domain is a domain.
- 40) Any subring of a field is a field.
- 41) $2^3 \equiv 2^8 \mod 5$.
- 42) Every integer is congruent to the sum of its digits modulo 11.
- 43) An element of a commutative ring R cannot be both a unit and a zerodivisor.
- 44) A subset of a ring that is also a ring is a subring.
- 45) \mathbb{Z}_n is a domain if and only if it is a field.
- 46) If ua + vb = n for some $a, b, u, v \in \mathbb{Z}$, then (a, b) = n.
- 47) If ua + vb = 1 for some $a, b, u, v \in \mathbb{Z}$, then (a, b) = 1.
- 48) Every element in \mathbb{Z}_{11} is invertible.
- 49) In \mathbb{Z}_{77} , (a) = (b) if and only if a = b.
- 50) Every ideal in \mathbb{Z}_{123} is principal.
- 51) In $\mathbb{Z}[x]$, $(a, b) = (\gcd(a, b))$.
- 52) If R and S are domains, then $R \times S$ is a domain.
- 53) In any ring R, ab = 0 implies a = 0 or b = 0.
- 54) In any ring R, we can cancel addition.
- 55) In any ring R, we can cancel multiplication.
- 56) On the set of real numbers, $r\tilde{s}$ if and only if |r| = |s| defines an equivalence relation.
- 57) If a is even and b is odd, (a, b) is even.
- 58) If a|b and b|c, then a|c.
- 59) If I and J are ideals in a ring $R, I \cup J$ is an ideal in R.
- 60) Modern algebra is fun.