Math 412 Midterm review problems

True or false. Justify!

1) In \mathbb{Z}, if $n=p_{1} \cdots p_{t}=q_{1} \cdots q_{s}$, for primes p_{i}, q_{j}, then $s=t$ and $p_{1}=q_{1}, \ldots, p_{s}=q_{s}$.
2) In general, the fastest way to find the gcd of two large integers is to factor them into primes.
3) The equation $[a]_{n} x=[b]_{n}$ has a solution in \mathbb{Z}_{n} if and only if $\operatorname{gcd}(a, n)=1$.
4) The system of equations $7 \mid(x+3)$ and $11 \mid(x-1)$ has a solution modulo 77 .
5) The system of equations $3 \mid x$ and $6 \mid(x-1)$ has a solution modulo 18.
6) If $n \mid a$ and $m \mid a$, then $n m \mid a$.
7) Given any ring R, there exists exactly one ring homomorphism $\mathbb{Z} \longrightarrow R$.
8) Given any ring R, there exists exactly one ring homomorphism $R \longrightarrow \mathbb{Z}$.
9) Given any ring R, there exists exactly one ring homomorphism $\mathbb{Z}_{n} \longrightarrow R$.
10) Given any ring R, there exists exactly one ring homomorphism $R \longrightarrow \mathbb{Z}_{n}$.
11) Every element in \mathbb{Z} is a unit.
12) The additive inverse of $[5]_{77}$ in \mathbb{Z}_{77} is $[149]_{77}$.
13) The multiplicative inverse of $[5]_{77}$ in \mathbb{Z}_{77} is $[108]_{77}$.
14) Every nonzero ring contains at least two ideals.
15) Every domain is a field.
16) Every field is a domain.
17) The zero ring is a domain.
18) There always exists a ring homomorphism between any two rings.
19) Any commutative ring that has only two ideals is a field.
20) The kernel of any ring homomorphism is an ideal.
21) The kernel of any ring homomorphism is a subring.
22) The image of any ring homomorphism is an ideal.
23) The image of any ring homomorphism is a subring.
24) If R is a commutative ring and $(g)=R$, then g is a unit.
25) If R is a domain, then $R[x]$ is a domain.
26) If F is a field, then $F[x]$ is a field.
27) If $p(x) \in \mathbb{Z}_{2}[x]$ has degree 3 , then $\mathbb{Z}_{2}[x]$ has 4 elements.
28) If $p(x)$ is irreducible, then $\operatorname{gcd}(p(x), f(x))$ is 1 or p.
29) If F is a field, the remainder of dividing $f(x)$ by $x-a$ is $f(a)$.
30) Modern algebra is fun.
31) The ring $\mathbb{Z}_{n}[x]$ is a domain.
32) If f and g differ by a unit in $F[x]$, where F is a field, then $(f, g)=1$.
33) If $u f+v g=4$ in $\mathbb{Q}[x]$, then $f+(g)$ is a unit in $\mathbb{Q}[x] /(g)$.
34) In $R[x]$, the product of two monic polynomials can be zero.
35) If F is a field, the map $F[x] \longrightarrow F$ sending each polynomial to its constant term is a ring homomorphism.
36) $x^{3}+2$ is a unit in $\mathbb{Z}_{5}[x] /\left(x^{4}-x^{2}\right)$.
37) The quotient ring $\mathbb{R}[x] /\left(x^{3}-x-6\right)$ is a field.
38) Every ideal is the kernel of some ring homomorphism.
39) Any subring of a domain is a domain.
40) Any subring of a field is a field.
41) $2^{3} \equiv 2^{8} \bmod 5$.
42) Every integer is congruent to the sum of its digits modulo 11.
43) An element of a commutative ring R cannot be both a unit and a zerodivisor.
44) A subset of a ring that is also a ring is a subring.
45) \mathbb{Z}_{n} is a domain if and only if it is a field.
46) If $u a+v b=n$ for some $a, b, u, v \in \mathbb{Z}$, then $(a, b)=n$.
47) If $u a+v b=1$ for some $a, b, u, v \in \mathbb{Z}$, then $(a, b)=1$.
48) Every element in \mathbb{Z}_{11} is invertible.
49) In $\mathbb{Z}_{77},(a)=(b)$ if and only if $a=b$.
50) Every ideal in \mathbb{Z}_{123} is principal.
51) In $\mathbb{Z}[x],(a, b)=(\operatorname{gcd}(a, b))$.
52) If R and S are domains, then $R \times S$ is a domain.
53) In any ring $R, a b=0$ implies $a=0$ or $b=0$.
54) In any ring R, we can cancel addition.
55) In any ring R, we can cancel multiplication.
56) On the set of real numbers, $r \tilde{s}$ if and only if $|r|=|s|$ defines an equivalence relation.
57) If a is even and b is odd, (a, b) is even.
58) If $a \mid b$ and $b \mid c$, then $a \mid c$.
59) If I and J are ideals in a ring $R, I \cup J$ is an ideal in R.
60) Modern algebra is fun.
