Math 412. Adventure sheet on ideals

DEFINITION: An ideal of a ring R is a nonempty subset [ satisfying

(1) Ifxy,29 € I, thenxy + 25 € I.

) Ifxelandr € R,thenrx € [ and xr € I,
CAUTION: When reading the text, you will see an ideal defined as a certain kind of “sub-
ring”. DO NOT USE THIS DEFINITION! Remember that for us, a subring always contains 1,
because all rings contain 1. But most ideals do not contain 1.

DEFINITION: Let [ be an ideal of a ring R. Consider arbitrary x,y € R. We say that x is
congruent to y modulo / if r —y € I.

DEFINITION: The congruence class of y modulo / is the set {y+2z | z € I} of all elements
of R congruent to y modulo /. We denote the congruence class modulo / by y + 1.

A. A WARM-UP TO THE WARM-UP. Check the following are true:

(1) Every ideal contains 0.
(2) Ideals are closed under additive inverses.
(3)If1 € I,thenl = R.

B. WARM-UP. Which of the following are ideals in the given rings?

(1) The set I of even integers in the ring Z.

(2) The set I of odd integers in the ring Z.

(3) The set I of integers that can be obtained as a Z-linear combination of the integers 18
and 24.

(4) The set of polynomials f in C[z] with nonzero constant term.

(5) The set of polynomials with even coefficients in Z[x].

(6) The set of classes {[0]12, [3]12, [6]12, [9]12} in the ring Z 5.

Solution. (2) and (4) are not ideals, but all the other ones are.

C. EASY PROOFS. Fix a commutative ring R and an ideal I.

(1) Prove that the kernel of a ring homomorphism R % S is an ideal of R.

(2) Verify that the set {y + 2z | z € I} really is precisely the set of all elements of R which
are congruent to y modulo /.

(3) Verify that congruence modulo 7 is an equivalence relation on R.

Solution.

(1) The kernel is nonempty because it always contains 0. If ¢(z) = ¢(y) = 0, then
oz +vy) = od(x) + ¢(y) = 0. Also, given any r € R, ¢(rx) = ¢(r)p(x) = 0.

(2) Givenz € I, (y+2)—y = z € 1, s0 y+ z is congruent to y modulo /. On the other
hand, if r is congruent to ¥y modulo /, then y — r = z for some z € I, by definition,
soy =1+ z.

(3) The proof is the same as what we have done over Z and F|z].
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D. PRINCIPAL IDEALS. Fix a commutative ring R and fix some ¢ € R. Let I be the set
(¢) :=={rc | r € R} of all multiples of c.

(1) Prove that [ is an ideal. We call this the principal ideal generated by c.

(2) Let R be a commutative ring, and r, s € R. When is () C (s)? When is (r) = (s)?

(3) Show that a is congruent to b modulo  if and only if ¢ divides @ — b in R.!

(4) In the case R = Z, fix ¢ = 20. In common language from high school, what is the
principal ideal generated by 20? What is another notation for 17 + 1?

(5) Let R = Z[z], and I be the set of polynomials in R such that f(0) is an even integer.
Show that I is an ideal, but that [ is not a principal ideal for any choice of c.?

Solution.

(1) Givenr,s € R,rc+ sc = (r+ s)c € I. Givenany r,s € I, s(rc) = (sr)c € 1.
Also [ is nonempty because c € I.

(2) (r) C (s) if and only if s|r. (r) = (s) if and only if r|s and s|r. If R also happens
to be a domain, this means that » = us for some unit w.

(3) By definition, a is congruent to b if @ — b € I, which is equivalent to saying a — b =
rc, which is equivalent to saying c divides a — b.

(4) The principal ideal generated by 20 is the set of multiples of 20. Another notation
for 17 + I is [17]a0.

(5) We prove this by contradiction. If I = (c¢) for some ¢, then ¢|2 and c|z. Since |2,
we know that ¢ is a constant. Then, c is a constant that divides 2, so ¢ = £1, £2.

But, z is not a multiple of £2 in Z|x], so I = (1). But this is a contradiction, since
1¢1!

E. IDEALS IN Z AND F[z].

(1) Let I be an ideal in Z, and suppose that I # {0}. Prove that I = (c), where c is the
smallest positive integer in /. Conclude that every ideal in Z is a principal ideal.
(2) Let F be a field, and R = F[z]. Let [ be an ideal in R, and suppose that I # {0}. Prove

that I = (f(z)), where f(x) is the monic polynomial of smallest degree in /. Conclude
that every ideal in R is a principal ideal.

(3) Is every ideal in every ring a principal ideal?

Solution.

(1) Note first that I contains a positive integer, since it contains some nonzero integer,
and it is closed under “negatives.” We need to show that if = € I, then c|x. Use the
division algorithm to write z = cq + r, with 0 < r < c. Since ¢ € I, cq € I. Since
cqel,—cqel. Since —cq € [andx € I,r = x — cq € 1. By definition of ¢, we
must have r = 0, so c|x.

(2) The proof is analogous to the previous part, just using the division algorithm for
polynomials instead!

(3) No!

F. GENERATORS.

Y]y in R if there exists a z € R such that zz = 1.
Hint: 2 € I and z € 1.



(1) Fix any elements ¢y, cs, . . ., ¢; in a commutative ring K. Show that the set
{rici +roco+---+mree | 1 € R}

of R-linear combinations of the ¢; is an ideal of R. We denote this ideal by (cy, c2,
and call it the ideal generated by c;,cs, ..., c;.

(2) Let m,n € Z. We know that the ideal generated by m and n is principal. What is a
(single) generator for this ideal?

(3) Let f,g € Flx]. We know that the ideal generated by f and ¢ is principal. What is a
(single) generator for this ideal?

(4) Find generators for the ideal considered in D5.

(5) Consider the ideal (z,y) C R[x,y]. Is it principal?

..,Ct),

Solution.
(1) We need to show that this is closed under addition, and absorbs multiplication. Let
x,y € (c1,C2,...,¢). Write © = 1ryc1 + 1race + -+ - + 104 and y = s1¢1 + S2¢o +
-+« + s4¢;. Then

THY = rici+racote A TiCtS1C1HSaCet S = (r1ts1) e+ (ratsa)cote (eS¢
which is in (¢, ¢a, . . ., ¢;). Similarly, for @ € R, we have

ax = a(ric1+racot- - +ric) = aricitargcot- - Harye; = (ary)ep+(arg)eat- - -+(ary) ey,
which is in (c1, ¢a, ..., ¢).

(2) The GCD of m and n! Let d = gcd(m,n). By a theorem, we know that there are
elements a,b € Z such that d = am + bn. Then, for any ¢ € Z, cd = (ca)m +
(cb)n € (m,n), so (d) C (m,n). On the other hand, we can write m = du,

n = dv for some integers u, v, so any number of the form am + bn can we written
as (au + bv)d € (d), so (m,n) C d.

(3) The proof is analogous to the previous one!

) (2,z)

(5) No!

G. ProODUCTS. Let R x S be a product of two rings.

(1) Show thatthe set I = R x {0g} = {(r,0s5) | 7 € R} is anideal of R x S.

(2) Prove that (ry, s1) is congruent modulo [ to (rs, s5) if and only if s; = ss.

(3) Prove that every congruence class of £ x S modulo [ contains exactly one element of
the form (Og, s) where s € S.

(4) Prove that the map R x S — S sending (r, s) — s is a surjective ring homomorphism
with kernel /.

Solution.

H. IDEALS IN FIELDS.

(1) Let I be an ideal in a ring R. Prove thatif 1z € I, then I = R.

(2) Prove that if IF is a field, then its only ideals are {0} and F.

(3) Prove that if IF is a field and R is a ring in which 0 # 1, then every ring homomorphism
F% Ris injective.



Solution.

(1) Forany r € R, we have r = 1 X R, sor € I by the absorption property.

(2) If I # {0}, there is some s # 0in I. Then, for any r € IF, we can write r = (rs™!)s,
so r € I by the absorption property.

(3) The kernel is an ideal, and is not all of [, since 1 is not in the kernel (1 maps to
1 # 0). Thus, the kernel is zero, so the homomorphism is injective!




