DEFINITION: An ideal of a ring R is a nonempty subset I satisfying
(1) If $x_{1}, x_{2} \in I$, then $x_{1}+x_{2} \in I$.
(2) If $x \in I$ and $r \in R$, then $r x \in I$ and $x r \in I$;

CaUtion: When reading the text, you will see an ideal defined as a certain kind of "subring". DO NOT USE THIS DEFINITION! Remember that for us, a subring always contains 1, because all rings contain 1 . But most ideals do not contain 1 .

Definition: Let I be an ideal of a ring R. Consider arbitrary $x, y \in R$. We say that x is congruent to y modulo I if $x-y \in I$.

DEFINITION: The congruence class of y modulo I is the set $\{y+z \mid z \in I\}$ of all elements of R congruent to y modulo I. We denote the congruence class modulo I by $y+I$.
A. A WARM-UP TO THE WARM-UP. Check the following are true:
(1) Every ideal contains 0.
(2) Ideals are closed under additive inverses.
(3) If $1 \in I$, then $I=R$.
B. WARM-UP. Which of the following are ideals in the given rings?
(1) The set I of even integers in the ring \mathbb{Z}.
(2) The set I of odd integers in the ring \mathbb{Z}.
(3) The set I of integers that can be obtained as a \mathbb{Z}-linear combination of the integers 18 and 24 .
(4) The set of polynomials f in $\mathbb{C}[x]$ with nonzero constant term.
(5) The set of polynomials with even coefficients in $\mathbb{Z}[x]$.
(6) The set of classes $\left\{[0]_{12},[3]_{12},[6]_{12},[9]_{12}\right\}$ in the ring \mathbb{Z}_{12}.

Solution. (2) and (4) are not ideals, but all the other ones are.
C. Easy Proofs. Fix a commutative ring R and an ideal I.
(1) Prove that the kernel of a ring homomorphism $R \xrightarrow{\phi} S$ is an ideal of R.
(2) Verify that the set $\{y+z \mid z \in I\}$ really is precisely the set of all elements of R which are congruent to y modulo I.
(3) Verify that congruence modulo I is an equivalence relation on R.

Solution.

(1) The kernel is nonempty because it always contains 0 . If $\phi(x)=\phi(y)=0$, then $\phi(x+y)=\phi(x)+\phi(y)=0$. Also, given any $r \in R, \phi(r x)=\phi(r) \phi(x)=0$.
(2) Given $z \in I,(y+z)-y=z \in I$, so $y+z$ is congruent to y modulo I. On the other hand, if r is congruent to y modulo I, then $y-r=z$ for some $z \in I$, by definition, so $y=r+z$.
(3) The proof is the same as what we have done over \mathbb{Z} and $\mathbb{F}[x]$.
D. Principal Ideals. Fix a commutative ring R and fix some $c \in R$. Let I be the set $(c):=\{r c \mid r \in R\}$ of all multiples of c.
(1) Prove that I is an ideal. We call this the principal ideal generated by c.
(2) Let R be a commutative ring, and $r, s \in R$. When is $(r) \subseteq(s)$? When is $(r)=(s)$?
(3) Show that a is congruent to b modulo I if and only if c divides $a-b$ in R. ${ }^{1}$
(4) In the case $R=\mathbb{Z}$, fix $c=20$. In common language from high school, what is the principal ideal generated by 20 ? What is another notation for $17+I$?
(5) Let $R=\mathbb{Z}[x]$, and I be the set of polynomials in R such that $f(0)$ is an even integer. Show that I is an ideal, but that I is not a principal ideal for any choice of $c .^{2}$

Solution.

(1) Given $r, s \in R, r c+s c=(r+s) c \in I$. Given any $r, s \in I, s(r c)=(s r) c \in I$. Also I is nonempty because $c \in I$.
(2) $(r) \subseteq(s)$ if and only if $s \mid r$. (r) =(s) if and only if $r \mid s$ and $s \mid r$. If R also happens to be a domain, this means that $r=u s$ for some unit u.
(3) By definition, a is congruent to b if $a-b \in I$, which is equivalent to saying $a-b=$ $r c$, which is equivalent to saying c divides $a-b$.
(4) The principal ideal generated by 20 is the set of multiples of 20. Another notation for $17+I$ is $[17]_{20}$.
(5) We prove this by contradiction. If $I=(c)$ for some c, then $c \mid 2$ and $c \mid x$. Since $c \mid 2$, we know that c is a constant. Then, c is a constant that divides 2 , so $c= \pm 1, \pm 2$. But, x is not a multiple of ± 2 in $\mathbb{Z}[x]$, so $I=(1)$. But this is a contradiction, since $1 \notin I$!

E. Ideals in \mathbb{Z} and $\mathbb{F}[x]$.

(1) Let I be an ideal in \mathbb{Z}, and suppose that $I \neq\{0\}$. Prove that $I=(c)$, where c is the smallest positive integer in I. Conclude that every ideal in \mathbb{Z} is a principal ideal.
(2) Let \mathbb{F} be a field, and $R=\mathbb{F}[x]$. Let I be an ideal in R, and suppose that $I \neq\{0\}$. Prove that $I=(f(x))$, where $f(x)$ is the monic polynomial of smallest degree in I. Conclude that every ideal in R is a principal ideal.
(3) Is every ideal in every ring a principal ideal?

Solution.

(1) Note first that I contains a positive integer, since it contains some nonzero integer, and it is closed under "negatives." We need to show that if $x \in I$, then $c \mid x$. Use the division algorithm to write $x=c q+r$, with $0 \leq r<c$. Since $c \in I, c q \in I$. Since $c q \in I,-c q \in I$. Since $-c q \in I$ and $x \in I, r=x-c q \in I$. By definition of c, we must have $r=0$, so $c \mid x$.
(2) The proof is analogous to the previous part, just using the division algorithm for polynomials instead!
(3) No!

F. GENERATORS.

[^0](1) Fix any elements $c_{1}, c_{2}, \ldots, c_{t}$ in a commutative ring R. Show that the set
$$
\left\{r_{1} c_{1}+r_{2} c_{2}+\cdots+r_{t} c_{t} \mid r_{i} \in R\right\}
$$
of R-linear combinations of the c_{i} is an ideal of R. We denote this ideal by $\left(c_{1}, c_{2}, \ldots, c_{t}\right)$, and call it the ideal generated by $c_{1}, c_{2}, \ldots, c_{t}$.
(2) Let $m, n \in \mathbb{Z}$. We know that the ideal generated by m and n is principal. What is a (single) generator for this ideal?
(3) Let $f, g \in \mathbb{F}[x]$. We know that the ideal generated by f and g is principal. What is a (single) generator for this ideal?
(4) Find generators for the ideal considered in D5.
(5) Consider the ideal $(x, y) \subseteq \mathbb{R}[x, y]$. Is it principal?

Solution.

(1) We need to show that this is closed under addition, and absorbs multiplication. Let $x, y \in\left(c_{1}, c_{2}, \ldots, c_{t}\right)$. Write $x=r_{1} c_{1}+r_{2} c_{2}+\cdots+r_{t} c_{t}$ and $y=s_{1} c_{1}+s_{2} c_{2}+$ $\cdots+s_{t} c_{t}$. Then
$x+y=r_{1} c_{1}+r_{2} c_{2}+\cdots+r_{t} c_{t}+s_{1} c_{1}+s_{2} c_{2}+\cdots+s_{t} c_{t}=\left(r_{1}+s_{1}\right) c_{1}+\left(r_{2}+s_{2}\right) c_{2}+\cdots+\left(r_{t}+s_{t}\right) c_{t}$, which is in $\left(c_{1}, c_{2}, \ldots, c_{t}\right)$. Similarly, for $a \in R$, we have
$a x=a\left(r_{1} c_{1}+r_{2} c_{2}+\cdots+r_{t} c_{t}\right)=a r_{1} c_{1}+a r_{2} c_{2}+\cdots+a r_{t} c_{t}=\left(a r_{1}\right) c_{1}+\left(a r_{2}\right) c_{2}+\cdots+\left(a r_{t}\right) c_{t}$, which is in $\left(c_{1}, c_{2}, \ldots, c_{t}\right)$.
(2) The GCD of m and n ! Let $d=\operatorname{gcd}(m, n)$. By a theorem, we know that there are elements $a, b \in \mathbb{Z}$ such that $d=a m+b n$. Then, for any $c \in \mathbb{Z}, c d=(c a) m+$ $(c b) n \in(m, n)$, so $(d) \subseteq(m, n)$. On the other hand, we can write $m=d u$, $n=d v$ for some integers u, v, so any number of the form $a m+b n$ can we written as $(a u+b v) d \in(d)$, so $(m, n) \subseteq d$.
(3) The proof is analogous to the previous one!
(4) $(2, x)$
(5) No!
G. PRoducts. Let $R \times S$ be a product of two rings.
(1) Show that the set $I=R \times\left\{0_{S}\right\}=\left\{\left(r, 0_{S}\right) \mid r \in R\right\}$ is an ideal of $R \times S$.
(2) Prove that $\left(r_{1}, s_{1}\right)$ is congruent modulo I to $\left(r_{2}, s_{2}\right)$ if and only if $s_{1}=s_{2}$.
(3) Prove that every congruence class of $R \times S$ modulo I contains exactly one element of the form $\left(0_{R}, s\right)$ where $s \in S$.
(4) Prove that the map $R \times S \rightarrow S$ sending $(r, s) \mapsto s$ is a surjective ring homomorphism with kernel I.

Solution.

H. Ideals in fields.

(1) Let I be an ideal in a ring R. Prove that if $1_{R} \in I$, then $I=R$.
(2) Prove that if \mathbb{F} is a field, then its only ideals are $\{0\}$ and \mathbb{F}.
(3) Prove that if \mathbb{F} is a field and R is a ring in which $0 \neq 1$, then every ring homomorphism $\mathbb{F} \xrightarrow{\phi} R$ is injective.

Solution.

(1) For any $r \in R$, we have $r=1 \times R$, so $r \in I$ by the absorption property.
(2) If $I \neq\{0\}$, there is some $s \neq 0$ in I. Then, for any $r \in \mathbb{F}$, we can write $r=\left(r s^{-1}\right) s$, so $r \in I$ by the absorption property.
(3) The kernel is an ideal, and is not all of \mathbb{F}, since 1 is not in the kernel (1 maps to $1 \neq 0$). Thus, the kernel is zero, so the homomorphism is injective!

[^0]: ${ }^{1} x \mid y$ in R if there exists a $z \in R$ such that $x z=y$.
 ${ }^{2}$ Hint: $2 \in I$ and $x \in I$.

