
Math 412. Adventure sheet on ideals

DEFINITION: An ideal of a ring R is a nonempty subset I satisfying
(1) If x1, x2 ∈ I , then x1 + x2 ∈ I .
(2) If x ∈ I and r ∈ R, then rx ∈ I and xr ∈ I;

CAUTION: When reading the text, you will see an ideal defined as a certain kind of “sub-
ring”. DO NOT USE THIS DEFINITION! Remember that for us, a subring always contains 1,
because all rings contain 1. But most ideals do not contain 1.

DEFINITION: Let I be an ideal of a ring R. Consider arbitrary x, y ∈ R. We say that x is
congruent to y modulo I if x− y ∈ I .

DEFINITION: The congruence class of y modulo I is the set {y+z | z ∈ I} of all elements
of R congruent to y modulo I . We denote the congruence class modulo I by y + I .

A. A WARM-UP TO THE WARM-UP. Check the following are true:
(1) Every ideal contains 0.
(2) Ideals are closed under additive inverses.
(3) If 1 ∈ I , then I = R.

B. WARM-UP. Which of the following are ideals in the given rings?
(1) The set I of even integers in the ring Z.
(2) The set I of odd integers in the ring Z.
(3) The set I of integers that can be obtained as a Z-linear combination of the integers 18

and 24.
(4) The set of polynomials f in C[x] with nonzero constant term.
(5) The set of polynomials with even coefficients in Z[x].
(6) The set of classes {[0]12, [3]12, [6]12, [9]12} in the ring Z12.

Solution. (2) and (4) are not ideals, but all the other ones are.

C. EASY PROOFS. Fix a commutative ring R and an ideal I .

(1) Prove that the kernel of a ring homomorphism R
φ→ S is an ideal of R.

(2) Verify that the set {y + z | z ∈ I} really is precisely the set of all elements of R which
are congruent to y modulo I .

(3) Verify that congruence modulo I is an equivalence relation on R.

Solution.
(1) The kernel is nonempty because it always contains 0. If φ(x) = φ(y) = 0, then

φ(x+ y) = φ(x) + φ(y) = 0. Also, given any r ∈ R, φ(rx) = φ(r)φ(x) = 0.
(2) Given z ∈ I , (y+z)−y = z ∈ I , so y+z is congruent to y modulo I . On the other

hand, if r is congruent to y modulo I , then y − r = z for some z ∈ I , by definition,
so y = r + z.

(3) The proof is the same as what we have done over Z and F[x].
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D. PRINCIPAL IDEALS. Fix a commutative ring R and fix some c ∈ R. Let I be the set
(c) := {rc | r ∈ R} of all multiples of c.

(1) Prove that I is an ideal. We call this the principal ideal generated by c.
(2) Let R be a commutative ring, and r, s ∈ R. When is (r) ⊆ (s)? When is (r) = (s)?
(3) Show that a is congruent to b modulo I if and only if c divides a− b in R.1

(4) In the case R = Z, fix c = 20. In common language from high school, what is the
principal ideal generated by 20? What is another notation for 17 + I?

(5) Let R = Z[x], and I be the set of polynomials in R such that f(0) is an even integer.
Show that I is an ideal, but that I is not a principal ideal for any choice of c.2

Solution.
(1) Given r, s ∈ R, rc + sc = (r + s)c ∈ I . Given any r, s ∈ I , s(rc) = (sr)c ∈ I .

Also I is nonempty because c ∈ I .
(2) (r) ⊆ (s) if and only if s|r. (r) = (s) if and only if r|s and s|r. If R also happens

to be a domain, this means that r = us for some unit u.
(3) By definition, a is congruent to b if a− b ∈ I , which is equivalent to saying a− b =

rc, which is equivalent to saying c divides a− b.
(4) The principal ideal generated by 20 is the set of multiples of 20. Another notation

for 17 + I is [17]20.
(5) We prove this by contradiction. If I = (c) for some c, then c|2 and c|x. Since c|2,

we know that c is a constant. Then, c is a constant that divides 2, so c = ±1,±2.
But, x is not a multiple of ±2 in Z[x], so I = (1). But this is a contradiction, since
1 /∈ I!

E. IDEALS IN Z AND F[x].
(1) Let I be an ideal in Z, and suppose that I 6= {0}. Prove that I = (c), where c is the

smallest positive integer in I . Conclude that every ideal in Z is a principal ideal.
(2) Let F be a field, and R = F[x]. Let I be an ideal in R, and suppose that I 6= {0}. Prove

that I = (f(x)), where f(x) is the monic polynomial of smallest degree in I . Conclude
that every ideal in R is a principal ideal.

(3) Is every ideal in every ring a principal ideal?

Solution.
(1) Note first that I contains a positive integer, since it contains some nonzero integer,

and it is closed under “negatives.” We need to show that if x ∈ I , then c|x. Use the
division algorithm to write x = cq + r, with 0 ≤ r < c. Since c ∈ I , cq ∈ I . Since
cq ∈ I , −cq ∈ I . Since −cq ∈ I and x ∈ I , r = x− cq ∈ I . By definition of c, we
must have r = 0, so c|x.

(2) The proof is analogous to the previous part, just using the division algorithm for
polynomials instead!

(3) No!

F. GENERATORS.

1x|y in R if there exists a z ∈ R such that xz = y.
2Hint: 2 ∈ I and x ∈ I .
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(1) Fix any elements c1, c2, . . . , ct in a commutative ring R. Show that the set

{r1c1 + r2c2 + · · ·+ rtct | ri ∈ R}

ofR-linear combinations of the ci is an ideal ofR. We denote this ideal by (c1, c2, . . . , ct),
and call it the ideal generated by c1, c2, . . . , ct.

(2) Let m,n ∈ Z. We know that the ideal generated by m and n is principal. What is a
(single) generator for this ideal?

(3) Let f, g ∈ F[x]. We know that the ideal generated by f and g is principal. What is a
(single) generator for this ideal?

(4) Find generators for the ideal considered in D5.
(5) Consider the ideal (x, y) ⊆ R[x, y]. Is it principal?

Solution.
(1) We need to show that this is closed under addition, and absorbs multiplication. Let

x, y ∈ (c1, c2, . . . , ct). Write x = r1c1 + r2c2 + · · · + rtct and y = s1c1 + s2c2 +
· · ·+ stct. Then

x+y = r1c1+r2c2+· · ·+rtct+s1c1+s2c2+· · ·+stct = (r1+s1)c1+(r2+s2)c2+· · ·+(rt+st)ct,

which is in (c1, c2, . . . , ct). Similarly, for a ∈ R, we have

ax = a(r1c1+r2c2+· · ·+rtct) = ar1c1+ar2c2+· · ·+artct = (ar1)c1+(ar2)c2+· · ·+(art)ct,

which is in (c1, c2, . . . , ct).
(2) The GCD of m and n! Let d = gcd(m,n). By a theorem, we know that there are

elements a, b ∈ Z such that d = am + bn. Then, for any c ∈ Z, cd = (ca)m +
(cb)n ∈ (m,n), so (d) ⊆ (m,n). On the other hand, we can write m = du,
n = dv for some integers u, v, so any number of the form am + bn can we written
as (au+ bv)d ∈ (d), so (m,n) ⊆ d.

(3) The proof is analogous to the previous one!
(4) (2, x)
(5) No!

G. PRODUCTS. Let R× S be a product of two rings.

(1) Show that the set I = R× {0S} = {(r, 0S) | r ∈ R} is an ideal of R× S.
(2) Prove that (r1, s1) is congruent modulo I to (r2, s2) if and only if s1 = s2.
(3) Prove that every congruence class of R × S modulo I contains exactly one element of

the form (0R, s) where s ∈ S.
(4) Prove that the map R × S → S sending (r, s) 7→ s is a surjective ring homomorphism

with kernel I .

Solution.

H. IDEALS IN FIELDS.

(1) Let I be an ideal in a ring R. Prove that if 1R ∈ I , then I = R.
(2) Prove that if F is a field, then its only ideals are {0} and F.
(3) Prove that if F is a field and R is a ring in which 0 6= 1, then every ring homomorphism

F φ→ R is injective.
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Solution.
(1) For any r ∈ R, we have r = 1×R, so r ∈ I by the absorption property.
(2) If I 6= {0}, there is some s 6= 0 in I . Then, for any r ∈ F, we can write r = (rs−1)s,

so r ∈ I by the absorption property.
(3) The kernel is an ideal, and is not all of F, since 1 is not in the kernel (1 maps to

1 6= 0). Thus, the kernel is zero, so the homomorphism is injective!


