Math 412. Adventure sheet on ideals

DEFINITION: An ideal of a ring R is a nonempty subset I satisfying
(1) If $x_{1}, x_{2} \in I$, then $x_{1}+x_{2} \in I$.
(2) If $x \in I$ and $r \in R$, then $r x \in I$ and $x r \in I$;

CAUTION: When reading the text, you will see an ideal defined as a certain kind of "subring". Do NOT USE THIS DEFINITION! Remember that for us, a subring always contains 1, because all rings contain 1 . But most ideals do not contain 1.

Definition: Let I be an ideal of a ring R. Consider arbitrary $x, y \in R$. We say that x is congruent to y modulo I if $x-y \in I$.

DEfinition: The congruence class of y modulo I is the set $\{y+z \mid z \in I\}$ of all elements of R congruent to y modulo I. We denote the congruence class modulo I by $y+I$.
A. A WARM-UP TO THE WARM-UP. Check the following are true:
(1) Every ideal contains 0.
(2) Ideals are closed under additive inverses.
(3) If $1 \in I$, then $I=R$.
B. WARM-UP. Which of the following are ideals in the given rings?
(1) The set I of even integers in the ring \mathbb{Z}.
(2) The set I of odd integers in the ring \mathbb{Z}.
(3) The set I of integers that can be obtained as a \mathbb{Z}-linear combination of the integers 18 and 24.
(4) The set of polynomials f in $\mathbb{C}[x]$ with nonzero constant term.
(5) The set of polynomials with even coefficients in $\mathbb{Z}[x]$.
(6) The set of classes $\left\{[0]_{12},[3]_{12},[6]_{12},[9]_{12}\right\}$ in the ring \mathbb{Z}_{12}.
C. Easy Proofs. Fix a commutative ring R and an ideal I.
(1) Prove that the kernel of a ring homomorphism $R \xrightarrow{\phi} S$ is an ideal of R.
(2) Verify that the set $\{y+z \mid z \in I\}$ really is precisely the set of all elements of R which are congruent to y modulo I.
(3) Verify that congruence modulo I is an equivalence relation on R.
D. Principal Ideals. Fix a commutative ring R and fix some $c \in R$. Let I be the set (c) $:=\{r c \mid r \in R\}$ of all multiples of c.
(1) Prove that I is an ideal. We call this the principal ideal generated by c.
(2) Let R be a commutative ring, and $r, s \in R$. When is $(r) \subseteq(s)$? When is $(r)=(s)$?
(3) Show that a is congruent to b modulo I if and only if c divides $a-b$ in $R .{ }^{1}$
(4) In the case $R=\mathbb{Z}$, fix $c=20$. In common language from high school, what is the principal ideal generated by 20 ? What is another notation for $17+I$?
(5) Let $R=\mathbb{Z}[x]$, and I be the set of polynomials in R such that $f(0)$ is an even integer. Show that I is an ideal, but that I is not a principal ideal for any choice of $c .^{2}$

[^0]E. Ideals in \mathbb{Z} and $\mathbb{F}[x]$.
(1) Let I be an ideal in \mathbb{Z}, and suppose that $I \neq\{0\}$. Prove that $I=(c)$, where c is the smallest positive integer in I. Conclude that every ideal in \mathbb{Z} is a principal ideal.
(2) Let \mathbb{F} be a field, and $R=\mathbb{F}[x]$. Let I be an ideal in R, and suppose that $I \neq\{0\}$. Prove that $I=(f(x))$, where $f(x)$ is the monic polynomial of smallest degree in I. Conclude that every ideal in R is a principal ideal.
(3) Is every ideal in every ring a principal ideal?
F. GENERATORS.
(1) Fix any elements $c_{1}, c_{2}, \ldots, c_{t}$ in a commutative ring R. Show that the set
$$
\left\{r_{1} c_{1}+r_{2} c_{2}+\cdots+r_{t} c_{t} \mid r_{i} \in R\right\}
$$
of R-linear combinations of the c_{i} is an ideal of R. We denote this ideal by $\left(c_{1}, c_{2}, \ldots, c_{t}\right)$, and call it the ideal generated by $c_{1}, c_{2}, \ldots, c_{t}$.
(2) Let $m, n \in \mathbb{Z}$. We know that the ideal generated by m and n is principal. What is a (single) generator for this ideal?
(3) Let $f, g \in \mathbb{F}[x]$. We know that the ideal generated by f and g is principal. What is a (single) generator for this ideal?
(4) Find generators for the ideal considered in D5.
(5) Consider the ideal $(x, y) \subseteq \mathbb{R}[x, y]$. Is it principal?
G. PRODUCTS. Let $R \times S$ be a product of two rings.
(1) Show that the set $I=R \times\left\{0_{S}\right\}=\left\{\left(r, 0_{S}\right) \mid r \in R\right\}$ is an ideal of $R \times S$.
(2) Prove that $\left(r_{1}, s_{1}\right)$ is congruent modulo I to $\left(r_{2}, s_{2}\right)$ if and only if $s_{1}=s_{2}$.
(3) Prove that every congruence class of $R \times S$ modulo I contains exactly one element of the form $\left(0_{R}, s\right)$ where $s \in S$.
(4) Prove that the map $R \times S \rightarrow S$ sending $(r, s) \mapsto s$ is a surjective ring homomorphism with kernel I.
H. Ideals in fields.
(1) Let I be an ideal in a ring R. Prove that if $1_{R} \in I$, then $I=R$.
(2) Prove that if \mathbb{F} is a field, then its only ideals are $\{0\}$ and \mathbb{F}.
(3) Prove that if \mathbb{F} is a field and R is a ring in which $0 \neq 1$, then every ring homomorphism $\mathbb{F} \xrightarrow{\phi} R$ is injective.

[^0]: ${ }^{1} x \mid y$ in R if there exists a $z \in R$ such that $x z=y$.
 ${ }^{2}$ Hint: $2 \in I$ and $x \in I$.

