Math 412. Adventure sheet on ideals

DEFINITION: An **ideal** of a ring R is a nonempty subset I satisfying

- (1) If $x_1, x_2 \in I$, then $x_1 + x_2 \in I$.
- (2) If $x \in I$ and $r \in R$, then $rx \in I$ and $xr \in I$;

CAUTION: When reading the text, you will see an ideal defined as a certain kind of "subring". DO NOT USE THIS DEFINITION! Remember that for us, a subring always contains 1, because all rings contain 1. But most ideals do not contain 1.

DEFINITION: Let I be an ideal of a ring R. Consider arbitrary $x, y \in R$. We say that x is **congruent** to y **modulo** I if $x - y \in I$.

DEFINITION: The **congruence class of** y **modulo** I is the set $\{y+z \mid z \in I\}$ of all elements of R congruent to y modulo I. We denote the congruence class modulo I by y+I.

A. A WARM-UP TO THE WARM-UP. Check the following are true:

- (1) Every ideal contains 0.
- (2) Ideals are closed under additive inverses.
- (3) If $1 \in I$, then I = R.

B. WARM-UP. Which of the following are ideals in the given rings?

- (1) The set I of even integers in the ring \mathbb{Z} .
- (2) The set I of odd integers in the ring \mathbb{Z} .
- (3) The set I of integers that can be obtained as a \mathbb{Z} -linear combination of the integers 18 and 24.
- (4) The set of polynomials f in $\mathbb{C}[x]$ with nonzero constant term.
- (5) The set of polynomials with even coefficients in $\mathbb{Z}[x]$.
- (6) The set of classes $\{[0]_{12}, [3]_{12}, [6]_{12}, [9]_{12}\}$ in the ring \mathbb{Z}_{12} .

C. EASY PROOFS. Fix a commutative ring R and an ideal I.

- (1) Prove that the kernel of a ring homomorphism $R \stackrel{\phi}{\to} S$ is an ideal of R.
- (2) Verify that the set $\{y+z\mid z\in I\}$ really is precisely the set of all elements of R which are congruent to y modulo I.
- (3) Verify that congruence modulo I is an equivalence relation on R.

D. PRINCIPAL IDEALS. Fix a commutative ring R and fix some $c \in R$. Let I be the set $(c) := \{rc \mid r \in R\}$ of all multiples of c.

- (1) Prove that I is an ideal. We call this the **principal ideal** generated by c.
- (2) Let R be a commutative ring, and $r, s \in R$. When is $(r) \subseteq (s)$? When is (r) = (s)?
- (3) Show that a is congruent to b modulo I if and only if c divides a b in R.
- (4) In the case $R = \mathbb{Z}$, fix c = 20. In common language from high school, what is the principal ideal generated by 20? What is another notation for 17 + I?
- (5) Let $R = \mathbb{Z}[x]$, and I be the set of polynomials in R such that f(0) is an even integer. Show that I is an ideal, but that I is *not* a principal ideal for any choice of c.²

 $^{^{1}}x|y$ in R if there exists a $z \in R$ such that xz = y.

²Hint: $2 \in I$ and $x \in I$.

E. Ideals in \mathbb{Z} and $\mathbb{F}[x]$.

- (1) Let I be an ideal in \mathbb{Z} , and suppose that $I \neq \{0\}$. Prove that I = (c), where c is the smallest positive integer in I. Conclude that every ideal in \mathbb{Z} is a principal ideal.
- (2) Let \mathbb{F} be a field, and $R = \mathbb{F}[x]$. Let I be an ideal in R, and suppose that $I \neq \{0\}$. Prove that I = (f(x)), where f(x) is the monic polynomial of smallest degree in I. Conclude that every ideal in R is a principal ideal.
- (3) Is every ideal in every ring a principal ideal?

F. GENERATORS.

(1) Fix any elements c_1, c_2, \ldots, c_t in a commutative ring R. Show that the set

$$\{r_1c_1 + r_2c_2 + \dots + r_tc_t \mid r_i \in R\}$$

of R-linear combinations of the c_i is an ideal of R. We denote this ideal by (c_1, c_2, \ldots, c_t) , and call it the **ideal generated by** c_1, c_2, \ldots, c_t .

- (2) Let $m, n \in \mathbb{Z}$. We know that the ideal generated by m and n is principal. What is a (single) generator for this ideal?
- (3) Let $f, g \in \mathbb{F}[x]$. We know that the ideal generated by f and g is principal. What is a (single) generator for this ideal?
- (4) Find generators for the ideal considered in D5.
- (5) Consider the ideal $(x, y) \subseteq \mathbb{R}[x, y]$. Is it principal?

G. PRODUCTS. Let $R \times S$ be a product of two rings.

- (1) Show that the set $I = R \times \{0_S\} = \{(r, 0_S) \mid r \in R\}$ is an ideal of $R \times S$.
- (2) Prove that (r_1, s_1) is congruent modulo I to (r_2, s_2) if and only if $s_1 = s_2$.
- (3) Prove that every congruence class of $R \times S$ modulo I contains exactly one element of the form $(0_R, s)$ where $s \in S$.
- (4) Prove that the map $R \times S \to S$ sending $(r,s) \mapsto s$ is a surjective ring homomorphism with kernel I.

H. IDEALS IN FIELDS.

- (1) Let I be an ideal in a ring R. Prove that if $1_R \in I$, then I = R.
- (2) Prove that if \mathbb{F} is a field, then its only ideals are $\{0\}$ and \mathbb{F} .
- (3) Prove that if \mathbb{F} is a field and R is a ring in which $0 \neq 1$, then every ring homomorphism $\mathbb{F} \stackrel{\phi}{\to} R$ is injective.