DEFINITION: A **group** is a nonempty set G with an operation \star is associative, has an identity, and has inverses. If we want to specify the operation, we may write (G, \star) .

We often just write gh for $g \star h$, and g^{-1} for the inverse of g.

DEFINITION: An **abelian group** is a group (G, \star) in which the operation \star is commutative.

DEFINITION: A subgroup of a group (G, \star) is a subset H which is itself a group under \star .

DEFINITION: An element g of a group (G, \star) has **order** n if n is the smallest positive integer such that $g^n = e$. If no such n exists, we say that g has infinite order.

DEFINITION: The **order** of a group G is the number of elements in G.

DEFINITION: The cyclic subgroup generated by an element g in G is the subgroup

$$\langle g \rangle = \{ g^n \mid n \in \mathbb{Z} \} = \{ \dots, g^{-2} = (g^{-1})^2, g^{-1}, g^0 = e, g^1 = g, g^2, \dots \}.$$

A group G is cyclic if $G = \langle g \rangle$ for some $g \in G$.

A. GROUPS COMING FROM RINGS: Let R be a ring with addition "+" and multiplication " \times ".

- (1) Show that (R, +) is an abelian group. We often denote this group by R.
- (2) Is (R, \times) always a group?
- (3) Let $R^{\times} \subseteq R$ be the set of units of R. Show that (R^{\times}, \times) is a group. We often denote this group by R^{\times} .
- (4) Is R^{\times} always abelian?
- (5) Show that \mathbb{Z}_n is a cyclic group.
- (6) How many elements are in \mathbb{Z}_8^{\times} ? Is this a cyclic group?
- (7) Describe the group $M_n(\mathbb{R})^{\times}$. What are the elements, and what is the operation? Have we seen another name for this group?

Solution.

- (1) The axioms for a ring included requiring that 0 is the additive identity, that every element has an additive inverse, and that the sum is commutative.
- (2) No! In fact, it is *never* a group, unless R is the ring with one element since 0 has no inverse.
- (3) The identity is 1. Given two units u and v, $(uv)^{-1} = v^{-1}u^{-1}$, so uv is invertible. By definition, every element has an inverse.
- (4) No! For example, if $R = M_2(R)$, not every two invertible matrices commute.
- (5) It is generated by 1.
- (6) We counted the units in \mathbb{Z}_8 before: there are 4, and they are 1, 3, 5, 7. All the integers between 1 and 7 that are coprime with 8.
- (7) All the invertible $n \times n$ matrices with real entries. Before we called this $GL_n(\mathbb{R})$.

B. SYMMETRIES OF A CUBE: Consider the group Cube whose elements are ways to pick up a cube and put it down in the same place.

- (1) How many elements are there in Cube that keep the top face on top?
- (2) How many elements are there in Cube?
- (3) Find elements of orders 1, 2, 3, and 4 in Cube. Could you find elements of other orders?

Solution.

- (1) 4.
- (2) $24 = 4 \times 6$.
- (3) Order 1: the identity. Order 4: rotating clockwise by 90 degrees while keeping the top face on top. Order 2: rotating clockwise by 180 degrees while keeping the top face on top. Order 3: rotating around a corner. There are no elements of other orders!

C. ORDERS OF ELEMENTS:

- (1) When we use the notation a^m for some integer $m \ge 2$, what axiom of groups are we implicitly using so that the notation is unambiguous?
- (2) Show that if $a^m = a^n$ for some positive integers m < n, then the order of a is less than or equal to n m.
- (3) Show that if $a^n = e$, then the order of a divides n^{1} .
- (4) Show that if the order of a is infinite, then the powers $\{a^m \mid m \in \mathbb{Z}\}\$ of a are distinct.
- (5) Show that the order of an element a is equal to the order of the subgroup $\langle a \rangle \leq G$.

Solution.

- (1) The notation means that we take the product of a with itself m times, and this is unambiguous because the operations is associative.
- (2) If $a^m = a^n$, then multiplying by the inverse of a^m we get $a^{n-m} = e$, where e is the identity.
- (3) Let k be the order of a. Clearly, $k \le n$. By the division algorithm, we can write n = kq + r for some positive integers k, r with $0 \le r < k$. Then

$$e = a^n = a^{kq+r} = (a^k)^q a^r = a^r.$$

By definition of order, k is the smallest positive integer such that $a^k = e$. Therefore, r = 0.

- (4) Notice that if a has infinite order, then aⁿ = e implies that n = 0. By definition, aⁿ = e does not hold for any positive n; moreover, a⁻ⁿ = e implies that aⁿ = e. If there exists m > n such that a^m = aⁿ, then a^{m-n} = e, and since a^k ≠ e for any positive k by assumption, we conclude that m = n.
- (5) We just showed that the elements $e, g, g^2, \ldots, g^{n-1}$ are all distinct, so the order of the cyclic group generated by g is at least n. Now given any integer k, by the division algorithm we can write k = nq + r for $0 \le r < n$, and

$$g^k = \left(g^n\right)^q g^r = g^r,$$

so $e, g, g^2, \ldots, g^{n-1}$ are really all the elements in the group.

¹Hint: Division algorithm.

DEFINITION: Given two groups G and G, their product is the group with underlying set $C \times H = \{(a, b) : a \in C, b \in H\}$

 $G \times H = \{(g, h) : g \in G, h \in H\}$

and with the operation defined by

$$(g,h)(a,b) = (ga,hb).$$

D. PRODUCTS OF GROUPS:

- (1) Show that the product of two groups is indeed a group. What is the identity of the group $G \times H$? What are the inverses of each element?
- (2) Show that if G and H are abelian groups, then so is $G \times H$.
- (3) If G is a nonabelian group and H is some group, can we say anything about whether $G \times H$ is an abelian group?
- (4) Are $\mathbb{Z}_2 \times \mathbb{Z}_2$ and \mathbb{Z}_4 isomorphic groups?

Solution.

- (1) The identity is (e_G, e_H) , and $(g, h)^{-1} = (g^{-1}, h^{-1})$, so every element is invertible.
- (2) (g,h)(g',h') = (gg',hh') = (g'g,h'h) = (g',h')(g,h).
- (3) It isn't: if $gg' \neq g'g$, then $(g, e)(g', e) \neq (g', e)(g, e)$.
- (4) No: one has an element of order 4 and the other doesn't.

DEFINITION: Given elements g_1, \ldots, g_n of a group G, the subgroup generated by g_1, \ldots, g_n , which we write $\langle g_1, \ldots, g_n \rangle$, is the set of all the finite products of the elements $g_1, \ldots, g_n, g_1^{-1}, \ldots, g_n^{-1}$, in any order, with any number of repetitions.

Given a group G, we say that $g_1, \ldots, g_n \in G$ are generators of G if $\langle g_1, \ldots, g_n \rangle = G$.

E. GENERATORS AND SUBGROUPS:

- (1) Explain why $\langle g_1, \ldots, g_n \rangle$, is the smallest subgroup of G containing g_1, \ldots, g_n .
- (2) Find a set of 2 generators for D_3 . Are there other sets of two generators for D_3 ? Is D_3 cyclic?
- (3) Find a finite set of generators for \mathbb{Z}^k , where the operation is addition term-by-term.
- (4) Show that every subgroup of a cyclic group is cyclic.
- (5) Show that if G and H are both cyclic groups of order n, then G and H are isomorphic.²

Solution.

- (1) It is a subgroup containing these elements. If H is a subgroup that contains all of these elements, it must contain all of their inverses, and all of the products of these elements and the inverses, so $\langle g_1, \ldots, g_n \rangle \subseteq H$. This means that $\langle g_1, \ldots, g_n \rangle$ is the smallest subgroup containing the elements.
- (2) A rotation and a flip generate: if we look at all of the subgroups of D_3 , no proper subgroup contains a flip and a rotation. Any such pair suffices. It is not cyclic, since there is no element of order 6.
- (3) $(1, 0, \ldots, 0), (0, 1, 0, \ldots, 0), \ldots, (0, 0, \ldots, 0, 1).$

²Sometimes we abuse notation and talk about *the* cyclic group of order n. What group is this?

- (4) Let G = ⟨g⟩ be cyclic, and H ≤ G. If H = {e}, it is a boring cyclic group. Otherwise, note that there exists some gⁿ ∈ H with n > 0: there is some nonzero power of H, and if we have a negative power, the inverse is a positive power. Let n be the smallest positive integer such that gⁿ ∈ H; we can do this by the well-ordering principle. We claim that H = ⟨gⁿ⟩. Let g^m ∈ H, and write m = qn + r with 0 ≤ r < n. Then g^r = g^m(gⁿ)^{-q} ∈ H, and by choice of r, we find that r = 0. Thus, m = qr, so g^m ∈ ⟨gⁿ⟩, as required.
- (5) If $G = \langle g \rangle$ and $H = \langle h \rangle$, then mapping $g^n \mapsto h^n$ is an isomorphism.
- F. BIJECTIONS OF A SET: Let X be any set. Let G be the set of all BIJECTIONS from X to itself.
 - (1) Prove that G is a group under composition.
 - (2) If X is a finite set of three objects, what is the book's word for a *bijection* from X to X? What is the book's notation in 7.1 for a bijection in this case? What is the book's notation for G in this case?
 - (3) Let X be an arbitrary set. Let $x \in X$. Let $H = \{g \in G \mid g(x) = x\}$. Prove that H is a subgroup of G.

Solution.

- (1) Composition of functions is associative; bijections have inverses; the identity map is the identity.
- (2) Permutation; S_3 .
- (3) This subset is closed under composition and inverses.