DEFINITION: A **group** is a nonempty set G with an operation \star is associative, has an identity, and has inverses. If we want to specify the operation, we may write (G, \star) .

We often just write gh for $g \star h$, and g^{-1} for the inverse of g.

DEFINITION: An **abelian group** is a group (G, \star) in which the operation \star is commutative.

DEFINITION: A subgroup of a group (G, \star) is a subset H which is itself a group under \star .

DEFINITION: An element g of a group (G, \star) has order n if n is the smallest positive integer such that $g^n = e$. If no such n exists, we say that g has infinite order.

DEFINITION: The **order** of a group G is the number of elements in G.

DEFINITION: The cyclic subgroup generated by an element g in G is the subgroup

$$g = \{g^n \mid n \in \mathbb{Z}\} = \{\dots, g^{-2} = (g^{-1})^2, g^{-1}, g^0 = e, g^1 = g, g^2, \dots\}.$$

A group G is cyclic if $G = \langle g \rangle$ for some $g \in G$.

A. GROUPS COMING FROM RINGS: Let R be a ring with addition "+" and multiplication " \times ".

- (1) Show that (R, +) is an abelian group. We often denote this group by R.
- (2) Is (R, \times) always a group?
- (3) Let R[×] ⊆ R be the set of units of R. Show that (R[×], ×) is a group. We often denote this group by R[×].
- (4) Is R^{\times} always abelian?
- (5) Show that \mathbb{Z}_n is a cyclic group.
- (6) How many elements are in \mathbb{Z}_8^{\times} ? Is this a cyclic group?
- (7) Describe the group $M_n(\mathbb{R})^{\times}$. What are the elements, and what is the operation? Have we seen another name for this group?

B. SYMMETRIES OF A CUBE: Consider the group Cube whose elements are ways to pick up a cube and put it down in the same place.

- (1) How many elements are there in Cube that keep the top face on top?
- (2) How many elements are there in Cube?
- (3) Find elements of orders 1, 2, 3, and 4 in Cube. Could you find elements of other orders?

C. ORDERS OF ELEMENTS:

- (1) When we use the notation a^m for some integer $m \ge 2$, what axiom of groups are we implicitly using so that the notation is unambiguous?
- (2) Show that if $a^m = a^n$ for some positive integers m < n, then the order of a is less than or equal to n m.
- (3) Show that if $a^n = e$, then the order of a divides n.¹
- (4) Show that if the order of a is infinite, then the powers $\{a^m \mid m \in \mathbb{Z}\}\$ of a are distinct.
- (5) Show that the order of an element a is equal to the order of the subgroup $\langle a \rangle \leq G$.

¹Hint: Division algorithm.

2

DEFINITION: Given two groups G and G, their product is the group with underlying set $G \times H = \{(a, b) : a \in G, b \in H\}$

 $G \times H = \{(g, h) : g \in G, h \in H\}$

and with the operation defined by

(g,h)(a,b) = (ga,hb).

D. PRODUCTS OF GROUPS:

- (1) Show that the product of two groups is indeed a group. What is the identity of the group $G \times H$? What are the inverses of each element?
- (2) Show that if G and H are abelian groups, then so is $G \times H$.
- (3) If G is a nonabelian group and H is some group, can we say anything about whether $G \times H$ is an abelian group?
- (4) Are $\mathbb{Z}_2 \times \mathbb{Z}_2$ and \mathbb{Z}_4 isomorphic groups?

DEFINITION: Given elements g_1, \ldots, g_n of a group G, the subgroup generated by g_1, \ldots, g_n , which we write $\langle g_1, \ldots, g_n \rangle$, is the set of all the finite products of the elements $g_1, \ldots, g_n, g_1^{-1}, \ldots, g_n^{-1}$, in any order, with any number of repetitions.

Given a group G, we say that $g_1, \ldots, g_n \in G$ are generators of G if $\langle g_1, \ldots, g_n \rangle = G$.

E. GENERATORS AND SUBGROUPS:

- (1) Explain why $\langle g_1, \ldots, g_n \rangle$, is the smallest subgroup of G containing g_1, \ldots, g_n .
- (2) Find a set of 2 generators for D_3 . Are there other sets of two generators for D_3 ? Is D_3 cyclic?
- (3) Find a finite set of generators for \mathbb{Z}^k , where the operation is addition term-by-term.
- (4) Show that every subgroup of a cyclic group is cyclic.
- (5) Show that if G and H are both cyclic groups of order n, then G and H are isomorphic.²

F. BIJECTIONS OF A SET: Let X be any set. Let G be the set of all BIJECTIONS from X to itself.

- (1) Prove that G is a group under composition.
- (2) If X is a finite set of three objects, what is the book's word for a *bijection* from X to X? What is the book's notation in 7.1 for a bijection in this case? What is the book's notation for G in this case?
- (3) Let X be an arbitrary set. Let $x \in X$. Let $H = \{g \in G \mid g(x) = x\}$. Prove that H is a subgroup of G.

²Sometimes we abuse notation and talk about *the* cyclic group of order n. What group is this?