DEFINITION: A group is a nonempty set $G$ with an operation $\star$ is associative, has an identity, and has inverses. If we want to specify the operation, we may write $(G, \star)$.

We often just write $g h$ for $g \star h$, and $g^{-1}$ for the inverse of $g$.
DEFINITION: An abelian group is a group $(G, \star)$ in which the operation $\star$ is commutative.
DEFINITION: A subgroup of a group $(G, \star)$ is a subset $H$ which is itself a group under $\star$.
DEfinition: An element $g$ of a group $(G, \star)$ has order $n$ if $n$ is the smallest positive integer such that $g^{n}=e$. If no such $n$ exists, we say that $g$ has infinite order.
Definition: The order of a group $G$ is the number of elements in $G$.
DEfinition: The cyclic subgroup generated by an element $g$ in $G$ is the subgroup

$$
\langle g\rangle=\left\{g^{n} \mid n \in \mathbb{Z}\right\}=\left\{\ldots, g^{-2}=\left(g^{-1}\right)^{2}, g^{-1}, g^{0}=e, g^{1}=g, g^{2}, \ldots\right\} .
$$

A group $G$ is cyclic if $G=\langle g\rangle$ for some $g \in G$.
A. Groups coming from rings: Let $R$ be a ring with addition " + " and multiplication " $\times$ ".
(1) Show that $(R,+)$ is an abelian group. We often denote this group by $R$.
(2) Is $(R, \times)$ always a group?
(3) Let $R^{\times} \subseteq R$ be the set of units of $R$. Show that $\left(R^{\times}, \times\right)$is a group. We often denote this group by $R^{\times}$.
(4) Is $R^{\times}$always abelian?
(5) Show that $\mathbb{Z}_{n}$ is a cyclic group.
(6) How many elements are in $\mathbb{Z}_{8}^{\times}$? Is this a cyclic group?
(7) Describe the group $M_{n}(\mathbb{R})^{\times}$. What are the elements, and what is the operation? Have we seen another name for this group?
B. Symmetries of a cube: Consider the group Cube whose elements are ways to pick up a cube and put it down in the same place.
(1) How many elements are there in Cube that keep the top face on top?
(2) How many elements are there in Cube?
(3) Find elements of orders $1,2,3$, and 4 in Cube. Could you find elements of other orders?

## C. Orders of elements:

(1) When we use the notation $a^{m}$ for some integer $m \geqslant 2$, what axiom of groups are we implicitly using so that the notation is unambiguous?
(2) Show that if $a^{m}=a^{n}$ for some positive integers $m<n$, then the order of $a$ is less than or equal to $n-m$.
(3) Show that if $a^{n}=e$, then the order of $a$ divides $n$. ${ }^{1}$
(4) Show that if the order of $a$ is infinite, then the powers $\left\{a^{m} \mid m \in \mathbb{Z}\right\}$ of $a$ are distinct.
(5) Show that the order of an element $a$ is equal to the order of the subgroup $\langle a\rangle \leq G$.

[^0]DEFINITION: Given two groups $G$ and $G$, their product is the group with underlying set

$$
G \times H=\{(g, h): g \in G, h \in H\}
$$

and with the operation defined by

$$
(g, h)(a, b)=(g a, h b)
$$

## D. PRODUCTS OF GROUPS:

(1) Show that the product of two groups is indeed a group. What is the identity of the group $G \times H$ ? What are the inverses of each element?
(2) Show that if $G$ and $H$ are abelian groups, then so is $G \times H$.
(3) If $G$ is a nonabelian group and $H$ is some group, can we say anything about whether $G \times H$ is an abelian group?
(4) Are $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $\mathbb{Z}_{4}$ isomorphic groups?

DEFINITION: Given elements $g_{1}, \ldots, g_{n}$ of a group $G$, the subgroup generated by $g_{1}, \ldots, g_{n}$, which we write $\left\langle g_{1}, \ldots, g_{n}\right\rangle$, is the set of all the finite products of the elements $g_{1}, \ldots, g_{n}, g_{1}^{-1}, \ldots, g_{n}^{-1}$, in any order, with any number of repetitions.

Given a group $G$, we say that $g_{1}, \ldots, g_{n} \in G$ are generators of $G$ if $\left\langle g_{1}, \ldots, g_{n}\right\rangle=G$.

## E. Generators and subgroups:

(1) Explain why $\left\langle g_{1}, \ldots, g_{n}\right\rangle$, is the smallest subgroup of $G$ containing $g_{1}, \ldots, g_{n}$.
(2) Find a set of 2 generators for $D_{3}$. Are there other sets of two generators for $D_{3}$ ? Is $D_{3}$ cyclic?
(3) Find a finite set of generators for $\mathbb{Z}^{k}$, where the operation is addition term-by-term.
(4) Show that every subgroup of a cyclic group is cyclic.
(5) Show that if $G$ and $H$ are both cyclic groups of order $n$, then $G$ and $H$ are isomorphic. ${ }^{2}$
F. Bijections of a Set: Let $X$ be any set. Let $G$ be the set of all BIJECTIONS from $X$ to itself.
(1) Prove that $G$ is a group under composition.
(2) If $X$ is a finite set of three objects, what is the book's word for a bijection from $X$ to $X$ ? What is the book's notation in 7.1 for a bijection in this case? What is the book's notation for $G$ in this case?
(3) Let $X$ be an arbitrary set. Let $x \in X$. Let $H=\{g \in G \mid g(x)=x\}$. Prove that $H$ is a subgroup of $G$.

[^1]
[^0]:    ${ }^{1}$ Hint: Division algorithm.

[^1]:    ${ }^{2}$ Sometimes we abuse notation and talk about the cyclic group of order $n$. What group is this?

