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Math 412. Group Actions.

1. GROUP ACTIONS

Let (G, ◦) be any group. Let X be any set (finite or infinite). An action of G on X is a
natural way that the group elements “move around” the elements of X . Formally:

Definition 1.1. An action of G on X is a map

G×X → X

(g, x) 7→ g · x
which satisfies

(1) eG · x = x for all x ∈ X .
(2) g1 · (g2 · x) = (g1 ◦ g2) · x for all g1, g2 ∈ G and all x ∈ X .

Here, it is important to absorb the correct use of notation: the set X has no extra structure (no operation) but the
action allows us to combine a group element g ∈ G with a set element x ∈ X to get a new set element g · x ∈ X .
The two axioms of an action ensure that this procedure is compatible with the group structure. In particular, the
first axiom tells us that the identity element of G behaves as expected: it does nothing to any x ∈ X .

Look carefully at Axiom 2: there are two different notations, · and ◦, and they mean two different things. Axiom
2 tells us that if we move an element x ∈ X to another element of X using first g2 and then g1, the result is the
same as if we let g1 ◦ g2 act directly on x.

Example 1.2. Let G be the group GL2(R) of 2× 2 matrices with real coefficients. Let X = R2

be the set of column vectors {
[
x
y

]
| x, y ∈ R}.

Then G acts on the set X in a natural way by left multiplication:[
a b
c d

]
·
[
x
y

]
=

[
ax+ by
cx+ dy

]
.

It is easy to see that both axioms of a group action hold:[
1 0
0 1

]
·
[
x
y

]
=

[
1 0
0 1

] [
x
y

]
=

[
x
y

]
and for any two matrices A,B ∈ GL2(R), we have

A · (B ·
[
x
y

]
) = A · (B

[
x
y

]
) = A(B

[
x
y

]
) = (AB)

[
x
y

]
= (AB) ·

[
x
y

]
,

by the associative law of matrix multiplication.

Example 1.3. Consider the dihedral group D4, the symmetry group of the square. We can
view D4 as acting on the vertices of the square. If we label the vertices {1, 2, 3, 4}, say, in
counterclockwise order from the top right, this gives an action of D4 on the set {1, 2, 3, 4}.
For example, the rotation r by 900 counterclockwise sends vertex 1 to vertex 2, where as the
reflection d over the line through vertex 1 and vertex 3 will fix vertex 1. Likewise r sends vertex
2 to vertex 3, where as d will send vertex 2 to vertex 4. The composition d ◦ r will send vertex
1 first to vertex 2, then to vertex 4, so that

(d ◦ r) · vertex 1 = d · (r · vertex 1),



Example 1.4. Consider the group G = Z× Z under addition. This group acts on the Cartesian
plane R2 in an obvious way:

(m,n) · (x, y) = (m+ x, n+ y)

by translation. Observe that the identity element of the group, (0, 0) leaves each element of R2

unchanged. So Axiom (1) of a group action holds. The element (1, 0) ∈ G, however, slides
each element (x, y) of the Cartesian plane 1 unit to the right, to the point (x + 1, y). To verify
this is an action, we must also check Axiom (2), which in this example looks like

(m1, n1) · [(m2, n2) · (x, y)] = (m1 +m2, n1 + n2) · (x, y),

using the fact that the operation of our group is +. It is easy check that this holds, by unraveling
each side using the definition of the action. (Do it!)

2. THE ORBIT OF A POINT

Let G be a group acting a set X . Consider a point x ∈ X .

DEFINITION: The orbit of x is the subset of X

O(x) := {g · x | g ∈ G} ⊂ X.

Note that when a group G acts on a set X , each point x of X has an orbit—this orbit is a
subset of X .

Example 2.1. Consider again Example 1.4 in which Z2 acts on the Cartesian plane R2 by
translation. What is the orbit of the origin? We compute

O((0, 0)) = {g · (0, 0) | g ∈ Z2} = {(m,n) ∈ Z2} = Z2.

Example 2.2. Let R× act on the Cartesian plane R2 by multiplication: for λ ∈ R× and (x, y) ∈
R2, define λ · (x, y) = (λx, λy). Let us compute some orbits:

(1) the orbit of (0, 0) is the set O((0, 0)) = {λ · (x, y) | λ ∈ R×} = {(0, 0)}. That is, the
origin is fixed by this action, and so makes a one-element orbit.

(2) The orbit of any non-zero (a, b) is the set

O((a, b)) := {λ · (a, b) | λ 6= 0} = {(λa, λb) | λ ∈ R×},

which we think of as the “punctured line” through the origin and (a, b)—here, the “punc-
ture” means we omit the origin itself. Two non-zero points are in the same orbit if and
only if they lie on the same line through the origin.

So for this action, we have two kinds of orbits: the origin, and the punctured lines through the
origin. Note that R2 is the disjoint union of these orbits: every point lies in exactly one.

Example 2.3. Consider the matrices

{
[
1 0
0 1

]
,

[
−1 0
0 1

]
,

[
−1 0
0 −1

]
,

[
1 0
0 −1

]
,

[
0 1
1 0

]
,

[
0 1
−1 0

]
,

[
0 −1
−1 0

]
,

[
0 −1
1 0

]
}.

It is not hard to check that these eight matrices form a subgroup of GL2(R). Let G act in the
obvious way on vectors in R2. There are four different kinds of orbits, depending on how many
of the coordinates are zero or equal:

(1) O(

[
0
0

]
) = {

[
0
0

]
}; This orbit has cardinality one. The origin is a fixed point of the

action.



(2) O(

[
x
y

]
) (where x, y 6= 0 and x 6= y) is

{
[
x
y

]
,

[
x
−y

]
,

[
−x
y

]
,

[
−x
−y

]
,

[
y
x

]
,

[
−y
x

]
,

[
−y
−x

]
,

[
y
−x

]
, }

This orbit has cardinality eight, which is the largest we can ever expect for the action of
an order eight group acting on a set. [Do you see why?]

(3) O(

[
0
y

]
) where y 6= 0, is

{
[
0
y

]
,

[
0
−y

]
,

[
−y
0

]
,

[
y
0

]
}

Note that this orbit is the same as O(

[
y
0

]
). These orbits are cardinality four.

(4) O(

[
x
x

]
), where x 6= 0, is

{
[
x
x

]
,

[
−x
−x

]
,

[
x
−x

]
,

[
−x
x

]
}

Note that this orbit is the same as the orbit of the point
[
−x
x

]
. Again, this orbit has

cardinality 4.

THE PARTITION OF X INTO ORBITS. Suppose that a group G acts on a set X . Then we can
define an equivalence relation on X as follows: say “x is equivalent to y” (and write x ∼ y) if
x ∈ O(y). This is an equivalence relation because

(1) x ∈ O(x) for all x ∈ X;
(2) x ∈ O(y) if and only if y ∈ O(x);
(3) x ∈ O(y) and y ∈ O(z) implies that x ∈ O(z).

Proof. Proof that ∼ is an equivalence relation There are three things to show:
(1) x ∼ x, which is trivial since x = e · x ∈ O(x).
(2) x ∼ y implies y ∼ x, which is easy. Indeed, if x ∈ O(y), we can write x = g · y, so that g−1x = y. This

shows that y ∈ O(x).
(3) x ∼ y and y ∼ z implies x ∼ z, which is also easy. If x ∈ O(y) and y ∈ O(z), we can write x = g · y

and y = h · z for some g, h ∈ G. So x = g · y = g · (h · z) = (gh) · z, showing x ∈ O(z).
�

Proposition 2.4. Suppose that a group G acts on a set X . Let x and y be two points of X . Then
either

O(x) = O(y) or O(x) ∩O(y) = ∅.
In particular, every element of X belongs to exactly one orbit.

Proof. To prove the statement, it is enough to show that if O(x) ∩O(y) is non-empty, then then O(x) = O(y).
Assume w ∈ O(x)∩O(y). Then in particular, w ∈ O(x). So we can write w = h ·x for some h ∈ G. But then

also for any g ∈ G, we have g · w = g · (h · x) = (g ◦ h) · x. This shows that O(w) ⊂ O(x). But since w = h · x
implies also that, h−1 · w = x, the same argument shows that O(x) ⊂ O(w). So O(x) = O(w). Repeating this
argument starting from w ∈ O(y), we also get that O(w) = O(y). So the sets O(x) and O(y) must be equal, as
needed.

It follows that every element of X is in exactly one orbit. For if there is some w ∈ X which in in two different
orbits, O(x) 6= O(y), then we immediately get a contradiction: O(x) ∩O(y) is empty so it cannot contain w.



�

The way to think about Proposition 2.4 is that the action of G on X will partition up X into
non-overlapping orbits. The group G moves points around within each orbit: you can get from
any point in one orbit to any other point in the same orbit by letting G act. But G can never
move a point from one orbit into a different orbit.

Example 2.5. Consider the rotation group SO2(R) = {
[
cos θ − sin θ
sin θ cos θ

]
| θ ∈ [0, 2π)}. It

acts on the plane R2 in an obvious way:[
cos θ − sin θ
sin θ cos θ

]
·
[
x
y

]
=

[
x cos θ − y sin θ
x sin θ + y cos θ

]
= the rotation of the vector

[
x
y

]
through an angle of θ counter-clockwise.

Let us compute the orbits. First note that for any A ∈ SO2(R), we have A
[
0
0

]
=

[
0
0

]
. So

O(

[
0
0

]
) = {

[
0
0

]
},

and the orbit of the origin contains only itself. We say that the origin is fixed point of this
action, since every element of the group leaves it fixed.

Now take any point p =

[
a
b

]
other than

[
0
0

]
. Applying a rotation A ∈ SO2, we get another

point on the circle with center
[
0
0

]
though p. As we apply all the elements of SO2, we get all

the points on this circle. That is,

O(

[
a
b

]
) = circle centered at origin through

[
a
b

]
.

The orbit of p is the circle centered at the origin through p.
The space R2 is partitioned up into orbits: each circle centered at the origin (including the

trivial “circle” of radius zero) is one orbit. As we range through all the different size circles,
these circles cover the whole of R2. Every point of R2 is in exactly one orbit. So we see that R2

is the disjoint union of the orbits for this action.

Example 2.6. Consider the natural action of S5 on the set ofX = {1, 2, 3, 4, 5}. That is, σ ∈ S5

acts on i ∈ {1, 2, 3, 4, 5} by simply σ(i). You should check that this is an action.
What is the orbit of the point 1 ∈ X? Well, the transposition τi = (1 i) sends 1 7→ i. So

basically, we can send 1 to any element ofX with this action. This meansO(1) = {1, 2, 3, 4, 5},
the whole set. Likewise, this is also the orbit of 2, or any element of X . All the orbits are the
same: O(1) = O(2) = O(3) = O(4) = O(5) = X . There is only one orbit, and X is the trivial
union of its distinct orbit(s).

Example 2.7. Consider the natural action of Sn on the set of P on subsets of {1, 2, 3, . . . , n}.
That is, σ ∈ Sn acts on a subset Y = {i1, i2 . . . , it} ⊂ {1, 2, . . . , n} by simply σ(Y ) =
{σ(i1), σ(i2) . . . , σ(it)} ⊂ {1, 2, . . . , n}. You should check that this is an action of Sn on P .

Let us compute the orbit of the subset {1} ∈ P . Each σ ∈ Sn will take the set {1} to the one
element set {σ(1)}, so the orbit contains only one element sets. But in fact the orbit consists of
all one-element sets, since the transposition τi = (1 i) sends {1} 7→ {i}.

Likewise, the orbit of {1, 2} is the set of all two-element sets. To see this, assume that
j 6= 1, 2. Consider an arbitrary two-element subset {i, j}. If {i, j} ={1, 2}, then it is clearly in



the orbit, since e · {1, 2} = {1, 2}. So we can assume without loss of generality that j 6= 1, 2.
To see that {i, j} is in the orbit of {1, 2}, we observe that there is a σ ∈ Sn which takes 1 to i
and 2 to j (for example, σ = (1 i)(2 j) has this property). Applying σ to {1, 2}, we compute:
σ · {1, 2} = {i, j}. Thus the orbit {1, 2} is the set of all 2-element subsets of {1, 2, . . . , n}.

In a similar way, we see that the set of all 3-element subsets of {1, 2, 3, . . . , n} forms one
orbit in P . And the set of all four-element subsets of {1, 2, 3, . . . , n} forms a different orbit of
P , etc.

The partition of P into orbits for this action is the same as the partition of P into collec-
tions of sets of the same cardinality. Clearly there is a total of n + 1 orbits in this partition
of P , one for each possible cardinalty 0, 1, . . . , n. The empty set (cardinality zero) and the
whole set {1, 2, . . . , n} (cardinality n) are fixed points of the action of Sn on P: each of their
orbits consists of only one element of P: the orbit of ∅ is {∅} and the orbit of {1, 2, . . . , n} is
{ {1, 2, . . . , n} }.

3. STABILIZERS AND THE ORBIT STABILIZER THEOREM

Let G be a group acting a set X . Consider a point x ∈ X .

Definition 3.1. The stabilizer of x is the subset of G

Stab(x) = {g ∈ G | g · x = x}.

Each x ∈ X has an orbit under the group action, which is a subset of X , and a stabilizer,
which is a subset of G. Do not confuse the two concepts! The stabilizer of a point x, however,
has additional structure:

Proposition 3.2. Suppose a group G acts on a set X . Fix any x ∈ X . Then the stabilizer of x

Stab(x) = {g ∈ G | g · x = x}

is a subgroup of G.

Proof. There are three things to check:

(1) Stab(x) is non-empty. This is clear, since eG · x = x, so that eG ∈ Stab(x).
(2) Stab(x) is closed under the operation of G: for this, take any g, h ∈ Stab(x). We need to verify that

g ◦ h ∈ Stab(x). This follows from Axiom 2, since (g ◦ h) · x = g · (h · x) = g · x = x.
(3) Stab(x) is closed under taking inverses. For this, take g ∈ Stab(x). We need to show that g−1 ∈

Stab(x). Since g · x = x, we can apply g−1 to both sides to get g−1 · (g · x) = g−1 · x. Now using the
axioms of a group action to simplify the left hand sids, we have that x = g−1 · x. So g−1 ∈ Stab(x).

Since Stab(x) non-empty, closed under the operation fromG and closed under taking inverse inG. it is a subgroup
of G.

�

Example 3.3. Consider again the group

G = {
[
1 0
0 1

]
,

[
−1 0
0 1

]
,

[
−1 0
0 −1

]
,

[
1 0
0 −1

]
,

[
0 1
1 0

]
,

[
0 1
−1 0

]
,

[
0 −1
−1 0

]
,

[
0 −1
1 0

]
}

of Example 2.3. We have already computed its orbits for its natural action on R2. Let’s compute
some stabilizers. Every element of G fixes the origin, so

stab(

[
0
0

]
) = G.



Now consider a point of the form
[
0
y

]
, where y 6= 0. Of course the identity fixes it, but also the

matrix
[
−1 0
0 1

]
. These are the only two matrices which fix this point, so

stab(

[
0
y

]
) = {

[
1 0
0 1

]
,

[
−1 0
0 1

]
},

which is a cyclic group of order 2. Similarly, points of the form
[
x
0

]
where x 6= 0 have stabilizer

stab(

[
x
0

]
) = {

[
1 0
0 1

]
,

[
1 0
0 −1

]
}.

It is also easy to check that (when x 6= 0),

stab(

[
x
x

]
) = {

[
1 0
0 1

]
,

[
0 1
1 0

]
},

and that for x 6= y 6= 0,

stab(

[
x
y

]
) = {e},

Observe that in this example that points in the same orbit may have different stabilizers, but
the order of the stabilizers for all x in the same orbit is the same. This is not an accident! It
follows from the next theorem, which is a widely useful tool for understanding groups and the
many ways that they can act on sets.

Theorem 3.4. If a finite group G acts on a set X , then for every x ∈ X , we have

|G| = |O(x)| × |Stab(x)|.

Proof. Fix x ∈ X . There is a surjective map G→ O(x) sending g 7→ g · x. Let K ⊂ G be the stabilizer of x. We
claim that this map induces a well-defined bijection from the set G/K of left K-cosets of G to O(x):

G/K → O(x) gK 7→ g · x.

To check this, we need to make sure that every element in the left coset gK goes the same element g · x, to be sure
it is well-defined. But for k ∈ K = Stab(x), we have (gk) · x = g · (k · x) = g · x. For surjectivity, note that
g ∈ G is in some coset, so every g ·x is in the image. To check injectivity, suppose that gK and hK have the same
image. This means that g · x = h · x, so that h−1g ∈ Stab(x) = K. We conclude that g ∈ hK, so that gK = hK.
This shows that there is a bijection between the set of all left cosets of Stab(x) and the orbit O(x). By Lagrange’s
theorem, the number of left cosets is [G : K] = |G|/|K|. So |G| = |K| × |O(x)|. �

Example 3.5. Let G be the rotational symmetry group of the cube. Consider the action of G on
the set of the six faces of the cube. Fix one face F . Since we can rotate to move any face to any
other, the orbit of F is the full set of all six faces. On the other hand, the rotations that fix F are
the four rotations (including the identity) around the axis perpendicular to F . Thus Stab(F ) is
a cyclic group of order 4. In particular

|G| = |O(F )| × |Stab(F )| = 6× 4 = 24.



4. A DIFFERENT WAY TO THINK ABOUT GROUP ACTIONS

Suppose that a group G acts on a set X . One way to understand this is to imagine picking
one g ∈ G and thinking about where that g sends each element of X . Each element of G gives
rise to a mapping

X
φg−→ X x 7→ g · x.

This mapping is a bijection, because it has inverse

X
φg−1

−→ X x 7→ g−1 · x.
So each element of G determines a bijection of X to itself. That is, each φg is an element of
the set Bij(X) of all bijections from X to itself. Putting these together, we have a mapping

G −→ Bij(X)

g 7→ φg.

This map is sometimes called the adjunction map determined by the group action.
Recall that Bij(X) is always a group under composition. So the adjunction map is a map

between two groups, and it is natural to wonder whether it is a group homomorphism. In fact,
the axioms of a group action guarantee this!

Formally:

Theorem 4.1. Let G be a group acting a set X . Then there is an induced group homomorphism

G
Φ−→ Bij(X) g 7→ [X

φg→ X x 7→ g · x],

where Bij(X) denotes the group of all bijections from X to itself, under composition. Con-
versely, given a group homomorphism

G
Φ−→ Bij(X)

we can recover a group action of G on X as follows: g · x = Φ(g)(x).

Proof. Fix an action of a group G on a set X . We need to prove that the adjunction map is a group homomor-
phism. That is, we must show that for any g, h ∈ G, Φ(gh) = Φ(g) ◦Φ(h). By definition of Φ, this says we must
show that φgh = φg ◦ φh. These are two different bijections X → X , so to show that they are equal, we must
show that for every input x ∈ X , they have the same output.

By definition, φgh(x) = (gh) · x. On the other hand φg ◦ φh(x) = g · (h · x). So we must verify that
(gh) · x = g · (h · x). But this is one of the axioms of a group action! Thus Φ is a group homomorphism.

For the other direction, assume that Φ is a group homomorphism. Then Φ(e) is the identity in Bij(X). This
means that φe does nothing to any x, or in other words e · x = x for all x ∈ X . This verifies the first axiom of a
group action.

For the second axiom, we use that Φ(gh) = Φ(g) ◦ Φ(h). This means that φgh = φg ◦ φh, which again means
that (gh) · x = g · (h · x) for all x ∈ X . The second axiom is verified. QED.

�

Example 4.2. As an application of the adjunction mapping, we can better understand the rota-
tional symmetry group G of the cube. Note that G acts naturally on the set of 4 grand diagonals
of the cube. The action of G on this four-element set is equivalent to a group homomorphism

G→ S4.

Since both groups G and S4 have 24 elements, this map will be an isomorphism if it is injective
(or surjective). To check that it is injective, consider an element g ∈ G is in the kernel. This
means g induces trivial bijection— the identity map—on the set of grand diagonals. In other
words, g is in the stabilizer of each grand diagonal. But the stabilizer of each grand diagonal
is an order three group of rotations around that diagonal. The intersection of any two of these



stabilizers is {eG} (since the intersection is a subgroup of both), so the entire kernel is trivial.
This proves that G ∼= S4. The symmetry group of a cube is isomorphic to S4!


