NOETHER'S FIRST ISOMORPHISM THEOREM: Let $R \xrightarrow{\phi} S$ be a surjective homomorphism of rings. Let I be the kernel of ϕ . Then R/I is isomorphic to S.

A: Fix any real number a. Consider the evaluation map

 $\eta: \mathbb{R}[x] \to \mathbb{R} \qquad f \mapsto f(a)$

- (1) Understand why the evaluation map is a surjective ring homomorphism.
- (2) Prove¹ that the kernel of η is the ideal I = (x a) of $\mathbb{R}[x]$ generated by x a.
- (3) Use the first isomorphism theorem to prove that $\mathbb{R}[x]/(x-a)$ is isomorphic to \mathbb{R} .
- (4) Give a direct proof that $\mathbb{R}[x]/(x-a) \cong \mathbb{R}$ by thinking about the congruence classes f + (x-a).² Why is there a bijection with \mathbb{R} that preserves the ring structure?

Solution.

- (1) For any $\lambda \in \mathbb{R}$, the constant polynomial λ is taken to λ . This is a ring homomorphism because $1 \mapsto 1$, $\eta(f+g) = f(a) + g(a) = \eta(f) + \eta(g)$, and $\eta(fg) = f(a)g(a) = \eta(f)\eta(g)$.
- (2) Elements in *I* are of the form g(x)(x − a), and η(g(x)(x − a)) = g(a) · (a − a) = 0. On the other hand, suppose g ∈ ker η, and use the division algorithm to write g(x) = h(x)(x − a) + r(x), where r(x) = 0 or has degree 0. Then r(x) = r is a constant polynomial, and

$$0 = \eta \left(h(x)(x-a) + r(x) \right) = 0 + \eta(r(x)) = r.$$

Therefore, $g \in (x - a)$.

(3) We have shown that η is a surjective ring homomorphism with kernel *I*. The statement follows by the First Isomorphism Theorem.

B: Let *i* be the complex number $\sqrt{-1}$. Consider the ring homomorphism

$$\phi: \mathbb{R}[x] \to \mathbb{C} \qquad f \mapsto f(i)$$

- (1) Prove that ϕ is surjective.
- (2) Prove that $x^2 + 1 \in \ker \phi$.
- (3) Prove that the kernel contains no (nonzero) polynomial of degree less than two.
- (4) Prove that $x^2 + 1$ generates ker ϕ . [Hint: If f(x) is in the kernel, use the division algorithm to divide f by $x^2 + 1$ and see what happens under ϕ .]
- (5) Use the First Isomorphism Theorem to explain how to think about the complex numbers as a quotient of the polynomial ring $\mathbb{R}[x]$.

Solution.

- (1) For any $\lambda \in \mathbb{C}$, the constant polynomial λ is taken to λ .
- (2) $i^2 + 1 = 0$.

¹Hint for the harder direction: say $g \in \ker \eta$, and use the division algorithm to divide g by x - a; apply η . ²Hint: For quotient rings of polynomial rings over a field, every congruence class contains a unique [what?]

- (3) The kernel contains no nonzero constant polynomial, ϕ is the identity map on constants. Given a polynomial of degree 1, say f(x) = bx + c, $\phi(f) = bi + c = 0$ if and only if both imaginary parts are 0, meaning b = c = 0.
- (4) Consider any f ∈ C[x] in the kernel of φ. If r ∈ C[x] is the remainder of dividing f by x² + 1, either r = 0 or r has degree at most 1. But

$$0 = \phi(f) = \phi(q(x^2 + 1) + r) = \phi(r),$$

so r must be in the kernel of ϕ as well. We have shown there are no nonzero polynomials of degree at most 1 in the kernel of ϕ , so r = 0. Therefore, $f \in (x^2+1)$, and since we have shown that $x^2 + 1$ is in the kernel of ϕ , we conclude that $(x^2 + 1)$ is the kernel of ϕ .

- (5) We have shown that ϕ is a surjective ring homomorphism with kernel $(x^2 + 1)$, so the First Isomorphism Theorem says that $\mathbb{R}[x]/(x^2 + 1) \cong \mathbb{C}$.
- C: PROOF OF THE FIRST ISOMORPHISM THEOREM. Fix a surjective ring homomorphism $\phi: R \to S$. Let I be its kernel, Define $\overline{\phi}: R/I \to S$ by $\overline{\phi}(r+I) = \phi(r)$.
 - (1) Show that $\overline{\phi}$ is a well-defined map.
 - (2) Show that $\overline{\phi}$ is a surjective ring homomorphism.
 - (3) Show that $\overline{\phi}$ is injective.
 - (4) Prove the First Isomorphism Theorem.

Solution.

(1) Given $r, s \in R$ such that $r - s \in I$,

$$\phi(r) - \phi(s) = \phi(r - s) = 0,$$

so $\phi(r) = \phi(s)$.

(2) Given any class $s \in S$, pick $r \in R$ such that $\phi(r) = s$. Then $\overline{\phi}(r+I) = \phi(r) = s$. Moreover,

$$\phi(1+I) = \phi(1) = 1$$

 $\overline{\phi}\left((r+I) + (s+I)\right) = \overline{\phi}\left((r+s) + I\right) = \phi(r+s) = \phi(r) + \phi(s) = \overline{\phi}(r+I) + \overline{\phi}(s+I),$ and similarly for the multiplication.

(3) If r + I is in the kernel of $\overline{\phi}$, then

$$\phi(r) = \overline{\phi}(r+I) = 0$$

and $r \in I$, so r + I = 0.

(4) We have found an explicit isomorphism $\overline{\phi}$ between R/I and S.

D: NEW PROOFS FOR OLD FACTS.

- (1) Show that whenever n and m are relatively prime integers, $\mathbb{Z}_{mn} \cong \mathbb{Z}_n \times \mathbb{Z}_m$.³
- (2) Let k be a field, $d \ge 1$, and $R = k[x_1, \dots, x_d]$. Show that $R/(x_1, \dots, x_d) \cong k$.

Solution.

³We have done this in a problem set! But now we can give a new proof using the First Isomorphism Theorem.

- Consider the ring homomorphism Z → Z_n × Z_m given by a → ([a]_n, [a]_m). This is a surjective ring homomorphism by the Chinese Remainder Theorem, which we proved in a problem set, and its kernel is (nm). By the First Isomorphism Theorem, Z/(nm) ≅ Z_n × Z_m.
- (2) Consider the evaluation map R → k given by f → f(0). This is a surjective ring homomorphism with kernel (x₁,..., x_d), so by the First Isomorphism Theorem, R/(x₁,..., x_d) ≅ k.

E: PRIME IDEALS. An ideal $P \subsetneq R$ in a commutative ring R is prime if $fg \in P$ implies $f \in P$ or $g \in P$.

- (1) Show that an ideal P is a prime ideal if and only if R/P is a domain.
- (2) What are the prime ideals in \mathbb{Z} ?
- (3) Show that the ideal (x, y) in $\mathbb{Z}[x, y]$ is prime.

Solution.

- (1) Suppose R/P is a domain. Consider $f, g \in R$ such that fg = 0. Then (f + P)(g + P) = 0 + P, so either f + P = 0 + P or g + P = 0 + P. If f + P = 0 + P, that means $f \in P$. On the other hand, assume P is prime, and consider two nonzero elements $f + P, g + P \in R/P$. Then $f \notin P$ and $g \notin P$, so $fg \notin P$ and $(f + P)(g + P) = fg + P \neq 0$.
- (2) The (principal) ideals generated by prime integers.
- (3) Similarly to what we have done before, we can use the first Isomorphism Theorem to show $\mathbb{Z}[x, y]/(x, y) \cong \mathbb{Z}$, which is a domain.