Math 412. Adventure sheet on the First Isomorphism Theorem
NOETHER'S FIRST ISOMORPHISM THEOREM: Let $R \xrightarrow{\phi} S$ be a surjective homomorphism of rings. Let I be the kernel of ϕ. Then R / I is isomorphic to S.

A: Fix any real number a. Consider the evaluation map

$$
\eta: \mathbb{R}[x] \rightarrow \mathbb{R} \quad f \mapsto f(a)
$$

(1) Understand why the evaluation map is a surjective ring homomorphism.
(2) Prove ${ }^{1}$ that the kernel of η is the ideal $I=(x-a)$ of $\mathbb{R}[x]$ generated by $x-a$.
(3) Use the first isomorphism theorem to prove that $\mathbb{R}[x] /(x-a)$ is isomorphic to \mathbb{R}.
(4) Give a direct proof that $\mathbb{R}[x] /(x-a) \cong \mathbb{R}$ by thinking about the congruence classes $f+(x-a) .{ }^{2}$ Why is there a bijection with \mathbb{R} that preserves the ring structure?

Solution.

(1) For any $\lambda \in \mathbb{R}$, the constant polynomial λ is taken to λ. This is a ring homomorphism because $1 \mapsto 1, \eta(f+g)=f(a)+g(a)=\eta(f)+\eta(g)$, and $\eta(f g)=f(a) g(a)=\eta(f) \eta(g)$.
(2) Elements in I are of the form $g(x)(x-a)$, and $\eta(g(x)(x-a))=g(a) \cdot(a-a)=$ 0 . On the other hand, suppose $g \in \operatorname{ker} \eta$, and use the division algorithm to write $g(x)=h(x)(x-a)+r(x)$, where $r(x)=0$ or has degree 0 . Then $r(x)=r$ is a constant polynomial, and

$$
0=\eta(h(x)(x-a)+r(x))=0+\eta(r(x))=r .
$$

Therefore, $g \in(x-a)$.
(3) We have shown that η is a surjective ring homomorphism with kernel I. The statement follows by the First Isomorphism Theorem.

B: Let i be the complex number $\sqrt{-1}$. Consider the ring homomorphism

$$
\phi: \mathbb{R}[x] \rightarrow \mathbb{C} \quad f \mapsto f(i)
$$

(1) Prove that ϕ is surjective.
(2) Prove that $x^{2}+1 \in \operatorname{ker} \phi$.
(3) Prove that the kernel contains no (nonzero) polynomial of degree less than two.
(4) Prove that $x^{2}+1$ generates $\operatorname{ker} \phi$. [Hint: If $f(x)$ is in the kernel, use the division algorithm to divide f by $x^{2}+1$ and see what happens under ϕ.]
(5) Use the First Isomorphism Theorem to explain how to think about the complex numbers as a quotient of the polynomial ring $\mathbb{R}[x]$.

Solution.

(1) For any $\lambda \in \mathbb{C}$, the constant polynomial λ is taken to λ.
(2) $i^{2}+1=0$.

[^0](3) The kernel contains no nonzero constant polynomial, ϕ is the identity map on constants. Given a polynomial of degree 1 , say $f(x)=b x+c, \phi(f)=b i+c=0$ if and only if both imaginary parts are 0 , meaning $b=c=0$.
(4) Consider any $f \in \mathbb{C}[x]$ in the kernel of ϕ. If $r \in \mathbb{C}[x]$ is the remainder of dividing f by $x^{2}+1$, either $r=0$ or r has degree at most 1 . But
$$
0=\phi(f)=\phi\left(q\left(x^{2}+1\right)+r\right)=\phi(r)
$$
so r must be in the kernel of ϕ as well. We have shown there are no nonzero polynomials of degree at most 1 in the kernel of ϕ, so $r=0$. Therefore, $f \in\left(x^{2}+1\right)$, and since we have shown that $x^{2}+1$ is in the kernel of ϕ, we conclude that $\left(x^{2}+1\right)$ is the kernel of ϕ.
(5) We have shown that ϕ is a surjective ring homomorphism with kernel $\left(x^{2}+1\right)$, so the First Isomorphism Theorem says that $\mathbb{R}[x] /\left(x^{2}+1\right) \cong \mathbb{C}$.

C: Proof of the First Isomorphism Theorem. Fix a surjective ring homomorphism $\phi: R \rightarrow S$. Let I be its kernel, Define $\bar{\phi}: R / I \rightarrow S$ by $\bar{\phi}(r+I)=\phi(r)$.
(1) Show that $\bar{\phi}$ is a well-defined map.
(2) Show that $\bar{\phi}$ is a surjective ring homomorphism.
(3) Show that $\bar{\phi}$ is injective.
(4) Prove the First Isomorphism Theorem.

Solution.

(1) Given $r, s \in R$ such that $r-s \in I$,

$$
\phi(r)-\phi(s)=\phi(r-s)=0
$$

so $\phi(r)=\phi(s)$.
(2) Given any class $s \in S$, pick $r \in R$ such that $\phi(r)=s$. Then $\bar{\phi}(r+I)=\phi(r)=s$. Moreover,

$$
\bar{\phi}(1+I)=\phi(1)=1,
$$

$\bar{\phi}((r+I)+(s+I))=\bar{\phi}((r+s)+I)=\phi(r+s)=\phi(r)+\phi(s)=\bar{\phi}(r+I)+\bar{\phi}(s+I)$, and similarly for the multiplication.
(3) If $r+I$ is in the kernel of $\bar{\phi}$, then

$$
\phi(r)=\bar{\phi}(r+I)=0
$$

and $r \in I$, so $r+I=0$.
(4) We have found an explicit isomorphism $\bar{\phi}$ between R / I and S.

D: NEW PROOFS FOR OLD FACTS.

(1) Show that whenever n and m are relatively prime integers, $\mathbb{Z}_{m n} \cong \mathbb{Z}_{n} \times \mathbb{Z}_{m}{ }^{3}$.
(2) Let k be a field, $d \geqslant 1$, and $R=k\left[x_{1}, \ldots, x_{d}\right]$. Show that $R /\left(x_{1}, \ldots, x_{d}\right) \cong k$.

Solution.

[^1](1) Consider the ring homomorphism $\mathbb{Z} \longrightarrow \mathbb{Z}_{n} \times \mathbb{Z}_{m}$ given by $a \mapsto\left([a]_{n},[a]_{m}\right)$. This is a surjective ring homomorphism by the Chinese Remainder Theorem, which we proved in a problem set, and its kernel is $(n m)$. By the First Isomorphism Theorem, $\mathbb{Z} /(n m) \cong \mathbb{Z}_{n} \times \mathbb{Z}_{m}$.
(2) Consider the evaluation map $R \longrightarrow k$ given by $f \mapsto f(0)$. This is a surjective ring homomorphism with kernel $\left(x_{1}, \ldots, x_{d}\right)$, so by the First Isomorphism Theorem, $R /\left(x_{1}, \ldots, x_{d}\right) \cong k$.

E: PRIME IDEALS. An ideal $P \subsetneq R$ in a commutative ring R is prime if $f g \in P$ implies $f \in P$ or $g \in P$.
(1) Show that an ideal P is a prime ideal if and only if R / P is a domain.
(2) What are the prime ideals in \mathbb{Z} ?
(3) Show that the ideal (x, y) in $\mathbb{Z}[x, y]$ is prime.

Solution.

(1) Suppose R / P is a domain. Consider $f, g \in R$ such that $f g=0$. Then $(f+P)(g+$ $P)=0+P$, so either $f+P=0+P$ or $g+P=0+P$. If $f+P=0+P$, that means $f \in P$. On the other hand, assume P is prime, and consider two nonzero elements $f+P, g+P \in R / P$. Then $f \notin P$ and $g \notin P$, so $f g \notin P$ and $(f+P)(g+P)=$ $f g+P \neq 0$.
(2) The (principal) ideals generated by prime integers.
(3) Similarly to what we have done before, we can use the first Isomorphism Theorem to show $\mathbb{Z}[x, y] /(x, y) \cong \mathbb{Z}$, which is a domain.

[^0]: ${ }^{1}$ Hint for the harder direction: say $g \in \operatorname{ker} \eta$, and use the division algorithm to divide g by $x-a$; apply η.
 ${ }^{2}$ Hint: For quotient rings of polynomial rings over a field, every congruence class contains a unique [what?]

[^1]: ${ }^{3}$ We have done this in a problem set! But now we can give a new proof using the First Isomorphism Theorem.

