NOETHER'S FIRST ISOMORPHISM THEOREM: Let $R \xrightarrow{\phi} S$ be a surjective homomorphism of rings. Let I be the kernel of ϕ . Then R/I is isomorphic to S.

A: Fix any real number a. Consider the evaluation map

 $\eta: \mathbb{R}[x] \to \mathbb{R} \qquad f \mapsto f(a)$

- (1) Understand why the evaluation map is a **surjective ring homomorphism.**
- (2) Prove¹ that the kernel of η is the ideal I = (x a) of $\mathbb{R}[x]$ generated by x a.
- (3) Use the first isomorphism theorem to prove that $\mathbb{R}[x]/(x-a)$ is isomorphic to \mathbb{R} .
- (4) Give a direct proof that $\mathbb{R}[x]/(x-a) \cong \mathbb{R}$ by thinking about the congruence classes f + (x-a).² Why is there a bijection with \mathbb{R} that preserves the ring structure?

B: Let *i* be the complex number $\sqrt{-1}$. Consider the ring homomorphism

$$\phi: \mathbb{R}[x] \to \mathbb{C} \qquad f \mapsto f(i)$$

- (1) Prove that ϕ is **surjective**.
- (2) Prove that $x^2 + 1 \in \ker \phi$.
- (3) Prove that the kernel contains no (nonzero) polynomial of degree less than two.
- (4) Prove that $x^2 + 1$ generates ker ϕ . [Hint: If f(x) is in the kernel, use the division algorithm to divide f by $x^2 + 1$ and see what happens under ϕ .]
- (5) Use the First Isomorphism Theorem to explain how to think about the complex numbers as a quotient of the polynomial ring $\mathbb{R}[x]$.

C: PROOF OF THE FIRST ISOMORPHISM THEOREM. Fix a surjective ring homomorphism $\phi: R \to S$. Let I be its kernel, Define $\overline{\phi}: R/I \to S$ by $\overline{\phi}(r+I) = \phi(r)$.

- (1) Show that $\overline{\phi}$ is a well-defined map.
- (2) Show that $\overline{\phi}$ is a surjective ring homomorphism.
- (3) Show that $\overline{\phi}$ is injective.
- (4) Prove the First Isomorphism Theorem.

D: NEW PROOFS FOR OLD FACTS.

- (1) Show that whenever n and m are relatively prime integers, $\mathbb{Z}_{mn} \cong \mathbb{Z}_n \times \mathbb{Z}_m^3$.
- (2) Let k be a field, $d \ge 1$, and $R = k[x_1, \dots, x_d]$. Show that $R/(x_1, \dots, x_d) \cong k$.

E: PRIME IDEALS. An ideal $P \subsetneq R$ in a commutative ring R is prime if $fg \in P$ implies $f \in P$ or $g \in P$.

- (1) Show that an ideal P is a prime ideal if and only if R/P is a domain.
- (2) What are the prime ideals in \mathbb{Z} ?
- (3) Show that the ideal (x, y) in $\mathbb{Z}[x, y]$ is prime.

¹Hint for the harder direction: say $g \in \ker \eta$, and use the division algorithm to divide g by x - a; apply η . ²Hint: For quotient rings of polynomial rings over a field, every congruence class contains a unique [what?] ³We have done this in a problem set! But now we can give a new proof using the First Isomorphism Theorem.