Math 412. Adventure sheet on the First Isomorphism Theorem

NOETHER'S FIRST ISOMORPHISM THEOREM: Let $R \xrightarrow{\phi} S$ be a surjective homomorphism of rings. Let I be the kernel of ϕ. Then R / I is isomorphic to S.

A: Fix any real number a. Consider the evaluation map

$$
\eta: \mathbb{R}[x] \rightarrow \mathbb{R} \quad f \mapsto f(a)
$$

(1) Understand why the evaluation map is a surjective ring homomorphism.
(2) Prove ${ }^{1}$ that the kernel of η is the ideal $I=(x-a)$ of $\mathbb{R}[x]$ generated by $x-a$.
(3) Use the first isomorphism theorem to prove that $\mathbb{R}[x] /(x-a)$ is isomorphic to \mathbb{R}.
(4) Give a direct proof that $\mathbb{R}[x] /(x-a) \cong \mathbb{R}$ by thinking about the congruence classes $f+(x-a) .{ }^{2}$ Why is there a bijection with \mathbb{R} that preserves the ring structure?

B: Let i be the complex number $\sqrt{-1}$. Consider the ring homomorphism

$$
\phi: \mathbb{R}[x] \rightarrow \mathbb{C} \quad f \mapsto f(i)
$$

(1) Prove that ϕ is surjective.
(2) Prove that $x^{2}+1 \in \operatorname{ker} \phi$.
(3) Prove that the kernel contains no (nonzero) polynomial of degree less than two.
(4) Prove that $x^{2}+1$ generates $\operatorname{ker} \phi$. [Hint: If $f(x)$ is in the kernel, use the division algorithm to divide f by $x^{2}+1$ and see what happens under ϕ.]
(5) Use the First Isomorphism Theorem to explain how to think about the complex numbers as a quotient of the polynomial ring $\mathbb{R}[x]$.

C: Proof of the First Isomorphism Theorem. Fix a surjective ring homomorphism $\phi: R \rightarrow S$. Let I be its kernel, Define $\bar{\phi}: R / I \rightarrow S$ by $\bar{\phi}(r+I)=\phi(r)$.
(1) Show that $\bar{\phi}$ is a well-defined map.
(2) Show that $\bar{\phi}$ is a surjective ring homomorphism.
(3) Show that $\bar{\phi}$ is injective.
(4) Prove the First Isomorphism Theorem.

D: NEW PROOFS FOR OLD FACTS.

(1) Show that whenever n and m are relatively prime integers, $\mathbb{Z}_{m n} \cong \mathbb{Z}_{n} \times \mathbb{Z}_{m}{ }^{3}$.
(2) Let k be a field, $d \geqslant 1$, and $R=k\left[x_{1}, \ldots, x_{d}\right]$. Show that $R /\left(x_{1}, \ldots, x_{d}\right) \cong k$.

E: Prime ideals. An ideal $P \subsetneq R$ in a commutative ring R is prime if $f g \in P$ implies $f \in P$ or $g \in P$.
(1) Show that an ideal P is a prime ideal if and only if R / P is a domain.
(2) What are the prime ideals in \mathbb{Z} ?
(3) Show that the ideal (x, y) in $\mathbb{Z}[x, y]$ is prime.

[^0]
[^0]: ${ }^{1}$ Hint for the harder direction: say $g \in \operatorname{ker} \eta$, and use the division algorithm to divide g by $x-a$; apply η.
 ${ }^{2}$ Hint: For quotient rings of polynomial rings over a field, every congruence class contains a unique [what?]
 ${ }^{3}$ We have done this in a problem set! But now we can give a new proof using the First Isomorphism Theorem.

