Math 412. Worksheet on The Fundamental Theorem of Arithmetic.

The Fundamental Theorem of Arithmetic:
 Every integer can be factored into primes in an essentially unique way.

This theorem is so familiar that you may think it obvious. It is not! More precisely:
DEFINITION: A nonzero integer $p \neq \pm 1$ is prime if its only divisors are ± 1 and $\pm p$.
The Fundamental Theorem of Arithmetic: A nonzero integer $n \neq \pm 1$ can be written as a product of primes; moreover, if

$$
p_{1} \cdots p_{s} \text { and } q_{1} \cdots q_{t}
$$

are two factorizations of n into primes, then, $s=t$ and there exists a reordering of the $\left\{q_{j}\right\}$ such that $q_{i}= \pm p_{i}$ for all i.
A. Warmup: Find two different factorizations of -24 into primes (note that these are the same up to reordering and sign). How do we factor -17 into an (essentially unique) product of primes?

A few possibilities to factor -24 :
$-24=-2 * 2 * 2 * 3=2 * 2 * 2 *-3=-3 * 2 * 2 * 2=-2 *-3 *-2 * 2$.
The prime factorization of -17 is simply -17 .
B. In this problem we assume Theorem 1.5: A nonzero integer $a \neq \pm 1$ is prime if and only if it has the following property:
(\star)

$$
\text { if } a \mid b c, \text { then } a \mid b \text { or } a \mid c \text {. }
$$

Note that a being prime is a statement about the numbers that divide a, whereas property (\star) is a statement about numbers that a divides.
(1) Observe that $6 \mid(9 \times 4)$. Use this observation and Theorem 1.5 to show that 6 is not prime.

6 does not divide 9 and 6 does not divide 4. Thus with $a=6, b=9$, and $c=4$, the "if" part of \star holds, while the "then" conclusion fails. Thus the implication in \star fails for $a=6$, so 6 is not prime.
(2) For the composite number $a=81$, find $b, c \in \mathbb{Z}$ so that property (\star) fails for a with your b and c.

Take $b=c=9$. Then $81 \mid(9 * 9)$ but $81 \nmid 9$.
(3) Prove the following Corollary of Theorem 1.5: If $p \in \mathbb{Z}$ is prime, and $p \mid\left(a_{1} \cdots a_{n}\right)$ where all $a_{i} \in \mathbb{Z}$, then $p \mid a_{i}$ for some $i .{ }^{1}$

[^0]We will use induction on n. If $n=1$, this just says that $p \mid a_{1}$ implies $p \mid a_{1}$, a tautology. Suppose we know the statement is true for n, and suppose $p \mid\left(a_{1} \cdots a_{n} a_{n+1}\right)$. Then, by $(\star), p \mid\left(a_{1} \cdots a_{n}\right)$ or $p \mid a_{n+1}$. In the first case, by hypothesis, $p \mid a_{i}$ for some $1 \leqslant i \leqslant n$, and the conclusion holds in the latter case as well.

C. Proof of the Fundamental Theorem, Part I

(1) Explain why it suffices to prove the Fundamental Theorem for positive n.

Suppose we know prime factorizations for all positive $m>1$, and we want to show that any negative $n<-1$ has a prime factorization. Then, for such an n, $-n>1$, so we can write $-n=p_{1} \cdots p_{t}$ by assumption. Then $n=\left(-p_{1}\right) p_{2} \cdots p_{t}$ is a prime factorization of n.
(2) The Fundamental Theorem is basically an "existence" and "uniqueness" statement. As usual, we focus of proving each separately. Discuss with your workmates precisely what is the "existence" part of the theorem? What is the "uniqueness" part of the theorem?
(3) Consider the set \mathcal{S} be the set of all integers greater than 1 that are not products of primes. To make progress on the proof of the Fundamental Theorem, what do we want to show about \mathcal{S} ?

That \mathcal{S} is empty!

(4) Show that every element of \mathcal{S} is a composite integer. ${ }^{2}$

Note that if p is prime, it cannot be an element of \mathcal{S} : any prime p has the trivial factorization p. Thus, if \mathcal{S} is nonempty, any of its elements is composite.
(5) Show that if a and b are integers greater than 1 , and $a b \in \mathcal{S}$, then a or b is in \mathcal{S}.

We prove the contrapositive: if a and b are not in \mathcal{S}, then $a b \notin \mathcal{S}$. If a and b are not in \mathcal{S}, then they admit prime factorizations,

$$
a=p_{1} \cdots p_{s} \quad \text { and } \quad b=q_{1} \cdots q_{t} .
$$

Then, $a b=p_{1} \cdots p_{s} q_{1} \ldots q_{t}$ is a prime factorization.
(6) Prove Theorem 1.7: Every integer (except 0,1 and -1) is a product of primes. ${ }^{3}$

We proceed by contradiction. If not, \mathcal{S} is nonempty, so it has a minimal element s. As noted in (4), s is composite: we can write $s=a b$ with $a, b>1$. By (5), either a or b is in \mathcal{S}. But, $a<s$ and $b<s$, which contradicts that s is minimal in \mathcal{S}. Thus, by contracdiction, we see that \mathcal{S} is empty. This implies the theorem.

[^1]D. Proof of the Fundamental Theorem, Part II. In C, you proved that every integer is a product of primes. We now need to see that this product is essentially unique. Assume Theorem 1.5 from Part B for now.
(1) Suppose that $p_{1} \cdots p_{s}$ and $q_{1} \cdots q_{t}$ are two different factorizations of an integer n into primes. Using (the Corollary) to Theorem 1.5, explain why p_{1} must divide one of the q_{i}. Now use the definition on page 1 to explain p_{1} must be $\pm q_{i}$ for some i.

We know that $p_{1} \mid\left(q_{1} \cdots q_{t}\right)$, so, by the Corollary, $p_{1} \mid q_{i}$ for some i. Since q_{i} is prime, $p_{1}= \pm q_{i}$ or $p_{1}= \pm 1$. Since $p_{1} \neq \pm 1$, we must have $p_{1}= \pm q_{i}$.
(2) Finish the uniqueness part of the proof of the Fundamental Theorem. ${ }^{4}$

We argue by contradiction: suppose that n is the smallest positive number that has two prime factorizations that are not essentially the same:

$$
n=p_{1} \cdots p_{s}=q_{1} \cdots q_{t} .
$$

By the previous part, $p_{1}= \pm q_{i}$. Consider

$$
n / p_{1}=p_{2} \cdots p_{s}=q_{1} \cdots \widehat{q_{i}} \cdots q_{t}
$$

After reordering and renumbering the q 's, we can take $i=1$ above, so

$$
n / p_{1}=p_{2} \cdots p_{s}=q_{2} \cdots q_{t}
$$

Since $n / p_{1}<n$, we know that there is a reordering of $\left\{q_{2}, \ldots, q_{n}\right\}$ such that $q_{i}=$ $\pm p_{i}$ for all $i>1$. Put together, this gives a reordering of $\left\{q_{1}, \ldots, q_{n}\right\}$ such that $q_{i}= \pm p_{i}$ for all $i \geq 1$. This contradicts that the two given factorizations are not essentially the same.
E. Proof of Theorem 1.5. The only missing piece of the proof of the Fundamental Theorem is now the proof of Theorem 1.5: A nonzero integer $a \neq \pm 1$ is prime if and only if it has the following property:
(\star

$$
\text { if } a \mid b c, \text { then } a \mid b \text { or } a \mid c .
$$

(1) If $a \mid d$ and $d \mid a$, how are a and d related?

$$
d= \pm a
$$

(2) Suppose that a has property (\star), and that $d \mid a$. Write $a=d e$ for some e, and notice that $a \mid d e$. What does the fact that a has property (\star) say here?

$$
a \mid d \text { or } a \mid e
$$

(3) Prove that if a has property (\star), then a is prime.

[^2]If $d \mid a$, write $a=d e$. Since $d \mid a$ and $e \mid a$, either $d= \pm a$ or $e= \pm a$, in which case $d= \pm 1$. This means a is prime.
(4) Suppose that p is prime and $b \in \mathbb{Z}$ is arbitrary. What are the possible values of (p, b) ?

If $p \mid b$, then the gcd is p, otherwise, it is 1 .
(5) Prove that if p is prime, then p has property (\star).

Suppose that p is prime, and $p \mid b c$. We need to show that $p \mid b$ or $p \mid c$. If $p \nmid b$, then $(p, b)=1$. By Theorem 1.4, $p \mid c$.
(6) Note that you have now proven Theorem 1.5, and hence completed the proof of the Fundamental Theorem!
F. The Greatest Common Divisor returns. Consider positive integers a and b, and write

$$
a=p_{1}^{a_{1}} \cdots p_{n}^{a_{n}} \quad \text { and } \quad b=p_{1}^{b_{1}} \cdots p_{n}^{b_{n}}
$$

where $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \geqslant 0$ and $p_{1}, \ldots, p_{n}>0$ are primes.
(1) Can you list all the common divisors of a and b ?

The common divisors of a and b are all the integers of the form

$$
\pm p_{1}^{c_{1}} \cdots p_{n}^{c_{n}}
$$

where for each $1 \leqslant i \leqslant n$ we have $0 \leqslant c_{i} \leqslant \min \left\{a_{i}, b_{i}\right\}$.
(2) Write (a, b) in terms of $p_{1}, \ldots, p_{n}, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$.

$$
(a, b)=p_{1}^{\min \left\{a_{1}, b_{1}\right\}} \cdots p_{n}^{\min \left\{a_{n}, b_{n}\right\}} .
$$

(3) Prove that if d is any common divisor of a and b, then $d \mid(a, b)$.

By (1), we can write $d= \pm p_{1}^{c_{1}} \cdots p_{n}^{c_{n}}$, where $0 \leqslant c_{i} \leqslant \min \left\{a_{i}, b_{i}\right\}$ for each i. Then $p_{i}^{c_{i}} \mid p_{i}^{\min \left\{a_{i}, b_{i}\right\}}$, and

$$
d= \pm p_{1}^{c_{1}} \cdots p_{n}^{c_{n}} \mid p_{1}^{\min \left\{a_{1}, b_{1}\right\}} \cdots p_{n}^{\min \left\{a_{n}, b_{n}\right\}}=(a, b) .
$$

[^0]: ${ }^{1}$ Hint: use induction on n.

[^1]: ${ }^{2}$ A number is composite if is not prime; that is, it factors into two numbers that are both not ± 1 or \pm itself.
 ${ }^{3}$ Hint: If not, consider the smallest element of \mathcal{S}, then find a smaller element of \mathcal{S} for a contradiction.

[^2]: ${ }^{4}$ Hint: Aiming for proof by contradiction, choose the smallest positive n that has two essentially different factorization into primes. Get a contradiction by finding a smaller one.

