
Math 412. Worksheet on The Fundamental Theorem of Arithmetic.

THE FUNDAMENTAL THEOREM OF ARITHMETIC:
Every integer can be factored into primes in an essentially unique way.

This theorem is so familiar that you may think it obvious. It is not! More precisely:

DEFINITION: A nonzero integer p 6= ±1 is prime if its only divisors are ±1 and ±p.

THE FUNDAMENTAL THEOREM OF ARITHMETIC: A nonzero integer n 6= ±1 can be
written as a product of primes; moreover, if

p1 · · · ps and q1 · · · qt
are two factorizations of n into primes, then, s = t and there exists a reordering of the {qj}
such that qi = ±pi for all i.

A. WARMUP: Find two different factorizations of −24 into primes (note that these are the
same up to reordering and sign). How do we factor −17 into an (essentially unique) product of
primes?

A few possibilities to factor −24:

−24 = −2 ∗ 2 ∗ 2 ∗ 3 = 2 ∗ 2 ∗ 2 ∗ −3 = −3 ∗ 2 ∗ 2 ∗ 2 = −2 ∗ −3 ∗ −2 ∗ 2.
The prime factorization of −17 is simply −17.

B. In this problem we assume THEOREM 1.5: A nonzero integer a 6= ±1 is prime if and only
if it has the following property:

(?) if a|bc, then a|b or a|c.
Note that a being prime is a statement about the numbers that divide a, whereas property (?) is
a statement about numbers that a divides.

(1) Observe that 6|(9 × 4). Use this observation and Theorem 1.5 to show that 6 is not
prime.

6 does not divide 9 and 6 does not divide 4. Thus with a = 6, b = 9, and c = 4,
the “if” part of ? holds, while the “then” conclusion fails. Thus the implication in ?
fails for a = 6, so 6 is not prime.

(2) For the composite number a = 81, find b, c ∈ Z so that property (?) fails for a with
your b and c.

Take b = c = 9. Then 81|(9 ∗ 9) but 81 - 9.

(3) Prove the following Corollary of Theorem 1.5: If p ∈ Z is prime, and p|(a1 · · · an)
where all ai ∈ Z, then p|ai for some i.1

1Hint: use induction on n.



We will use induction on n. If n = 1, this just says that p|a1 implies p|a1, a tau-
tology. Suppose we know the statement is true for n, and suppose p|(a1 · · · anan+1).
Then, by (?), p|(a1 · · · an) or p|an+1. In the first case, by hypothesis, p|ai for some
1 6 i 6 n, and the conclusion holds in the latter case as well.

C. PROOF OF THE FUNDAMENTAL THEOREM, PART I

(1) Explain why it suffices to prove the Fundamental Theorem for positive n.

Suppose we know prime factorizations for all positive m > 1, and we want to
show that any negative n < −1 has a prime factorization. Then, for such an n,
−n > 1, so we can write −n = p1 · · · pt by assumption. Then n = (−p1)p2 · · · pt is
a prime factorization of n.

(2) The Fundamental Theorem is basically an “existence” and “uniqueness” statement. As
usual, we focus of proving each separately. Discuss with your workmates precisely what
is the “existence” part of the theorem? What is the “uniqueness” part of the theorem?

(3) Consider the set S be the set of all integers greater than 1 that are not products of primes.
To make progress on the proof of the Fundamental Theorem, what do we want to show
about S?

That S is empty!

(4) Show that every element of S is a composite integer.2

Note that if p is prime, it cannot be an element of S: any prime p has the trivial
factorization p. Thus, if S is nonempty, any of its elements is composite.

(5) Show that if a and b are integers greater than 1, and ab ∈ S, then a or b is in S.

We prove the contrapositive: if a and b are not in S, then ab /∈ S. If a and b are
not in S, then they admit prime factorizations,

a = p1 · · · ps and b = q1 · · · qt.
Then, ab = p1 · · · psq1 . . . qt is a prime factorization.

(6) Prove Theorem 1.7: Every integer (except 0, 1 and −1) is a product of primes.3

We proceed by contradiction. If not, S is nonempty, so it has a minimal element
s. As noted in (4), s is composite: we can write s = ab with a, b > 1. By (5), either
a or b is in S. But, a < s and b < s, which contradicts that s is minimal in S. Thus,
by contracdiction, we see that S is empty. This implies the theorem.

2A number is composite if is not prime; that is, it factors into two numbers that are both not ±1 or ± itself.
3Hint: If not, consider the smallest element of S, then find a smaller element of S for a contradiction.



D. PROOF OF THE FUNDAMENTAL THEOREM, PART II. In C, you proved that every integer
is a product of primes. We now need to see that this product is essentially unique. Assume
Theorem 1.5 from Part B for now.

(1) Suppose that p1 · · · ps and q1 · · · qt are two different factorizations of an integer n into
primes. Using (the Corollary) to Theorem 1.5, explain why p1 must divide one of the
qi. Now use the definition on page 1 to explain p1 must be ±qi for some i.

We know that p1|(q1 · · · qt), so, by the Corollary, p1|qi for some i. Since qi is
prime, p1 = ±qi or p1 = ±1. Since p1 6= ±1, we must have p1 = ±qi.

(2) Finish the uniqueness part of the proof of the Fundamental Theorem.4

We argue by contradiction: suppose that n is the smallest positive number that
has two prime factorizations that are not essentially the same:

n = p1 · · · ps = q1 · · · qt.
By the previous part, p1 = ±qi. Consider

n/p1 = p2 · · · ps = q1 · · · q̂i · · · qt.
After reordering and renumbering the q’s, we can take i = 1 above, so

n/p1 = p2 · · · ps = q2 · · · qt.
Since n/p1 < n, we know that there is a reordering of {q2, . . . , qn} such that qi =
±pi for all i > 1. Put together, this gives a reordering of {q1, . . . , qn} such that
qi = ±pi for all i ≥ 1. This contradicts that the two given factorizations are not
essentially the same.

E. PROOF OF THEOREM 1.5. The only missing piece of the proof of the Fundamental Theorem
is now the proof of Theorem 1.5: A nonzero integer a 6= ±1 is prime if and only if it has the
following property:

(?) if a|bc, then a|b or a|c.

(1) If a|d and d|a, how are a and d related?

d = ±a

(2) Suppose that a has property (?), and that d|a. Write a = de for some e, and notice that
a|de. What does the fact that a has property (?) say here?

a|d or a|e.

(3) Prove that if a has property (?), then a is prime.

4Hint: Aiming for proof by contradiction, choose the smallest positive n that has two essentially different
factorization into primes. Get a contradiction by finding a smaller one.



If d|a, write a = de. Since d|a and e|a, either d = ±a or e = ±a, in which case
d = ±1. This means a is prime.

(4) Suppose that p is prime and b ∈ Z is arbitrary. What are the possible values of (p, b)?

If p|b, then the gcd is p, otherwise, it is 1.

(5) Prove that if p is prime, then p has property (?).

Suppose that p is prime, and p|bc. We need to show that p|b or p|c. If p - b, then
(p, b) = 1. By Theorem 1.4, p|c.

(6) Note that you have now proven Theorem 1.5, and hence completed the proof of the
Fundamental Theorem!

F. THE GREATEST COMMON DIVISOR RETURNS. Consider positive integers a and b, and
write

a = pa11 · · · pann and b = pb11 · · · pbnn
where a1, . . . , an, b1, . . . , bn > 0 and p1, . . . , pn > 0 are primes.

(1) Can you list all the common divisors of a and b?

The common divisors of a and b are all the integers of the form

±pc11 · · · pcnn
where for each 1 6 i 6 n we have 0 6 ci 6 min{ai, bi}.

(2) Write (a, b) in terms of p1, . . . , pn, a1, . . . , an, b1, . . . , bn.

(a, b) = p
min{a1,b1}
1 · · · pmin{an,bn}

n .

(3) Prove that if d is any common divisor of a and b, then d|(a, b).

By (1), we can write d = ±pc11 · · · pcnn , where 0 6 ci 6 min{ai, bi} for each i.
Then pcii |p

min{ai,bi}
i , and

d = ±pc11 · · · pcnn |p
min{a1,b1}
1 · · · pmin{an,bn}

n = (a, b).


