Math 412. Adventure sheet on the Euclidean Algorithm.

Definition: The greatest common divisor or GCD of two integers a, b is the largest integer d such that $d \mid a$ and $d \mid b$. We often write (a, b) for the GCD of a and b.

ThEOREM 1.2: Let a and b be integers, and assume that a and b are not both zero. There exist $r, s \in \mathbb{Z}$ such that $r a+s b=(a, b)$.

The Euclidean algorithm is a method to find the GCD of two integers, as well as a specific pair of numbers r, s such that $r a+s b=(a, b)$. We will say that an expression of the form $r a+s b$ with $r, s \in \mathbb{Z}$ is a linear combination of a and $b .{ }^{1}$

A. Warmup:

(1) List all factors ${ }^{2}$ of 18 ? List all factors of 24. Find (18, 24).
(2) For $a \in \mathbb{Z}$, what is (a, a) ? What is $(a, 7 a)$? If $a>0$, what is the GCD of a and 0 ?
B. Suppose we had two numbers a and b, and we did the division algorithm to get $a=b q+r$ for some $q, r \in \mathbb{Z}$.
(1) Show that if d is a common divisor of b and r, then d is a common divisor of a and b. What does this say about the relationship between (a, b) and (b, r) ?
(2) Show that if d is a common divisor of a and b, then d is a common divisor of b and r. What does this say about the relationship between (b, r) and (a, b) ?
(3) Show that $(a, b)=(b, r)$.
(4) How might (3) make the computation of (a, b) easier?
C. Consider the following computation, which you can assume is accurate:

$$
\begin{equation*}
524=148 \cdot 3+80 \tag{i}
\end{equation*}
$$

$$
0 \leq 80<148
$$

(ii)

$$
148=80 \cdot 1+68
$$

$$
0 \leq 68<80
$$

(iii)

$$
80=68 \cdot 1+12
$$

$$
0 \leq 12<68
$$

(iv)

$$
68=12 \cdot 5+8
$$

$$
0 \leq 8<12
$$

$$
\begin{equation*}
12=8 \cdot 1+4 \tag{v}
\end{equation*}
$$

$$
0 \leq 4<8
$$

$$
\begin{equation*}
8=4 \cdot 2+0 \tag{vi}
\end{equation*}
$$

(1) What is going on on each individual line?
(2) How does each line relate to the previous one?
(3) Prove that

$$
(524,148)=(148,80)=(80,68)=(68,12)=(12,8)=(8,4)=(4,0)=4
$$

D. Continuing this example...
(1) Use equation (i) to express 80 as a linear combination of 524 and 148.
(2) Use equation (ii) to express 68 as a linear combination of 148 and 80 . Use this and the previous part to express 68 as a linear combination of 524 and 148.
(3) Express 12 as a linear combination of 524 and 148.
(4) Express $4=(524,148)$ as a linear combination of 524 and 148.

[^0]E. The computation in C is an example of the Euclidean algorithm applied to 524 and 148 . Use the Euclidean algorithm to find $(1003,456)$. Express $(1003,456)$ as a linear combination of 1003 and 456.
F. Without formally writing a careful proof, discuss with your workmates how the Euclidean algorithm can be used to prove the Theorem at the top of the previous page. How is this different from the non-constructive proof in the textbook?

[^0]: ${ }^{1}$ Just like in linear algebra, except with integers instead of real number scalars and vectors.
 ${ }^{2}$ Factor is another word for divisor. Completely synonymous.

