Math 412. Adventure sheet on elliptic curves

DEfinition: A (real, affine) elliptic curve is the solution set in \mathbb{R}^{2} to an equation of the form $y^{2}=x^{3}+a x+b$ for real constants $a, b \in \mathbb{R}$ that satisfy the technical assumption that $4 a^{3}+27 b^{2} \neq 0$. Notation: We write E to refer to the elliptic curve that corresponds to the solution set in \mathbb{R}^{2} of $f_{E}(x, y)=y^{2}-\left(x^{3}+a x+b\right)=0$.

Elliptic curves have an interesting operation on them. Given a point $P \in E$, set P^{\prime} to be the reflection of P over the x-axis. Given two points $P \neq Q \in E$, define $P \star Q$ as follows: take the line through P and Q, and let R be the other point of intersection of E with that line. Set $P \star Q=R^{\prime}$.

A. Playing with elliptic curves.

(1) Pick a couple of points P and Q on one of your elliptic curves, and compute P^{\prime} and $P \star Q$.
(2) Explain why \star is commutative.
(3) Take the solution set of $y=x^{2}$, and try to do the rule $(-)^{\prime}$ as defined above. Does this work?
(4) Take the solution set of $x=y^{2}$, and try to do the rule $(-)^{\prime}$ as defined above. Does this work?
(5) Take the solution set of $x=y^{2}$, and try to do the rule \star as defined above. Does this work?
(6) In the diagram, compute $A \star B, B \star C, A \star(B \star C)$ and $(A \star B) \star C$. What do you observe? What do you suspect about the operation \star ?
(7) Explain why $P_{\star} P$ doesn't make any sense using the definition above.
(8) Fix a point $P \in E$. What happens if you try to compute $P \star Q$ for points Q getting closer and closer to P ? Come up with a reasonable rule for $P \star P$.

Solution.

(1) OK!
(2) It answer only depends on the line going through P and Q, which is quite the same as the line going through Q and P.
(3) No way! This rule takes you off of the curve.
(4) Yeah, this one is OK.
(5) No way! A line intersects a parabola in only two points.
(6) Wow! It looks associative.
(7) There's only one point, and there are infinitely many lines through a point.
(8) They approach a tangent line. A reasonable rule for $P \star P$ is to let R be the third point on the tangent line to P, and set $P \star P=R^{\prime}$.
B. Making a group from an elliptic curve: Let E be an elliptic curve, and $E^{*}=E \cup\{\infty\}$, where ∞ is an extra element. ${ }^{1}$ We will say that "the line through P and ∞ " for any point $P \in E$ is the vertical line through P.
(1) Show that, if we try to use the definition of the rule \star as given in the intro, then $P \star \infty=\infty \star P=P$ for all $P \in E$.
(2) Set $\infty^{\prime}=\infty$. Given $P \in E$, can you find an element $Q \in E$ such that $P \star Q=Q \star P=\infty$?
(3) If we want to make E^{*} into a group, what would the identity be? What would the inverses be?

[^0](4) If we want to make E^{*} into a group, what would the elements of order 2 be?

Solution.

(1) If the line through P and ∞ is the vertical line through P, then it meets the curve at P^{\prime}. We get that $P \star \infty=P$, and $\infty \star P=P$ too since it is commutative.
(2) $Q=P^{\prime}$ works. The line through P and P^{\prime} is vertical, so it passes through ∞. We get $P \star P^{\prime}=P^{\prime} \star P=\infty^{\prime}=\infty$.
(3) Based on (1), ∞ would be the right choice for the identity. Based on (2), P^{\prime} would be a good choice for the inverse of P.
(4) This would imply $P=P^{\prime}$, so P must be on the x-axis.

We have noticed already that being able to define the rules $(-)^{\prime}$ and $(-) \star(-)$ is something very special: if you try to do this with most curves, neither rule will make sense. ${ }^{2}$ We will use algebra to see that these rules are well-defined.

C. Vertical lines intersecting elliptic curves.

(1) Show that if $(x, y) \in E$, then $(x,-y) \in E$.
(2) Let $L=\{(x, y) \mid x=c\}$ be a vertical line. Show that $L \cap E$ has at most two points. ${ }^{3}$
(3) Find, using the pictured examples, examples of vertical lines L such that $|L \cap E|=0,|L \cap E|=1$, and $|L \cap E|=2$.

Solution.

(1) We need to use the equation. Replacing y with $-y$ leaves y^{2} the same, so this holds. This justifies P^{\prime}.
(2) The vertical line is $x=c$. The intersection of the line and the curve consists of points with $x=c$ and $y^{2}=c^{3}+a c+b$. This gives at most two points.
(3) OK!
D. Nonvertical lines intersecting elliptic curves: Let $L=\{(x, y) \mid y=m x+d\}$ be a line that is not vertical.
(1) Show that the x-coordinates of points in $L \cap E$ are solutions to $f_{E}(x, m x+d)$.
(2) With the notation of (1), show that $f_{E}(x, m x+d)$ is a polynomial in x of degree (exactly) 3 . Conclude that $|L \cap E| \leqslant 3$.
(3) Show that if L is a line that is not vertical, and $|L \cap E| \geqslant 2$, then $f_{E}(x, m x+d)$ either has three distinct roots, or has two roots, one of which has multiplicity two.

Solution.

(1) This just follows from substitution.
(2) $f_{E}(x, m x+d)=(m x+d)^{2}-x^{3}-a x-b=-x^{3}+m^{2} x^{2}+(2 m d-a) x+\left(d^{2}-b\right)$. This has degree three, so there are at most three different x-values for solutions. Since all of the

[^1]solutions live on a nonvertical line, there can be at most one solution for any x-coordinate. Thus, the intersection contains at most three points.
(3) Suppose that a and b are the x-coordinates of two points in the intersection. We know that $(x-a)(x-b)$ divides $f_{E}(x, m x+d)$ of degree three, and the quotient has degree one, so there is a third linear factor. Either this gives a third solution, or a repetition of a or b as a root.

FACT: If $L=\{(x, y) \mid y=m x+d\}$, then the polynomial $g_{L, E}(x)=f_{E}(x, m x+d)$ has x_{0} as a double root if and only if L is tangent to E at $\left(x_{0}, m x_{0}+d\right)$.

If $L^{\prime}=\{(x, y) \mid x=c\}$, then the polynomial $g_{L^{\prime}, E}(y)=f_{E}(c, y)$ has y_{0} as a double root if and only if L^{\prime} is tangent to E at $\left(c, y_{0}\right)$.

E. The group rule on E^{*}.

(1) Let P and Q be distinct points in E with $P \neq P^{\prime}$, and let L be the line through P and Q. Show that one of the following happens:
(a) L intersects E in a third point (and no more).
(b) L is tangent to P and does not intersect E in any other point.
(c) L is tangent to Q and does not intersect E in any other point.
(2) Let $P \in E$. Show that the tangent line to E through P meets E^{*} in exactly one other point. ${ }^{4}$

In Case (1a) above, we define $P \star Q$ to be R^{\prime}, where R^{\prime} is the third point. In Case (1b), we define $P \star Q=P^{\prime}$. In Case (1c), we define $P \star Q=Q^{\prime}$. In Case (2), we define $P \star P$ to be R^{\prime}, where R is the other point on the line. Finally, $P \star P^{\prime}=\infty$, and ∞ acts as the identity.

Solution.

(1) This is just $\mathrm{D}(2)$ and $\mathrm{D}(3)$ translated with the Fact above.
(2) First, assume that L is not vertical. If $g_{L, E}(x)$ has x_{0} as a double root, then $\left(x-x_{0}\right)^{2}$ divides it. The quotient is another linear factor. By our cheating assumption, it gives another root besides x_{0}.

Now, if L is vertical, the only way $g_{L, E}(y)$ has a double root is if there is exactly one root, in which case L meets E^{*} only at the point and at ∞.

THEOREM: This operation \star makes E^{*} into a group; in particular, it is associative.

F. Elliptic Curves over Finite Fields. Observe that we have interpreted the group operation on E^{*} purely algebraically: we can compute intersections of lines with E with algebra, and the condition that a line is tangent to E has an interpretation in terms of roots of polynomials. Consequently, we can define elliptic curves over finite fields, and get finite groups from them $!^{5}$

[^2](1) Let $\mathbb{F}=\mathbb{Z}_{11}$. Consider the elliptic curve over \mathbb{F}
$$
E=\left\{(x, y) \in \mathbb{F} \times \mathbb{F} \mid y^{2}=x^{3}+2 x+1\right\} .
$$

Check that $P=(0,10)$ and $Q=(3,1)$ satisfy $P, Q \in E$.
(2) Compute $P \star Q$.
(3) Compute $P \star P$.

Solution.

(1) We just compute $10^{2}=0^{3}+2 * 0+1$ and $1^{2}=3^{3}+2 * 3+1$.
(2) First we find the line passing through P and Q. Its slope is $3 /(-9)=-3$, and its intercept is 10 , so L is given by $y=-3 x-1$. We now find solutions to $g_{E, L}(x)=(-3 x-1)^{2}-x^{3}-$ $2 x-1=-x^{3}-2 x^{2}+4 x$. We already know $x=0$ and $x=3$ are roots. We can divide out those linear factors to get $x-6$ as another linear factor, so $x=6$. We plug in to the linear equation to get $y=-3 * 6-1=3$. The third intersection point is $(6,3)$. Now we flip over the x-axis (negate the y-coordinate) to get the point $(6,8)$.
(3) We need to find the line through P that is tangent to it. Unless the line is vertical, it has the from $y=m x+10=m x-1$ for some m. The corresponding $g_{E, L}(x)$ function is $(m x-1)^{2}-x^{3}-2 x-1=-x^{3}+m^{2} x^{2}-(2 m+2) x$. For $x=0$ to be a double root, we must have $2 m+2=0$, so $m=10$. Now with $m=10=-1$, we need the third root of this polynomial. $g_{E, L}(x)=-x^{3}+x^{2}$ in this case, so $x=1$ is the other root. Using $y=-x-1$, we get $y=-2$, so the other point in the line is $(1,-2)$. Reflecting over the axis, we get $P \star P=(1,2)$.

[^0]: ${ }^{1}$ Intuitively, we can think of ∞ as a point that is infinitely high up in the y-direction, so that it lies on every vertical line.

[^1]: ${ }^{2}$ The fact that \star is associative is even more amazing!
 ${ }^{3}$ Hint: Plug in $x=c$ into f_{E}.

[^2]: ${ }^{4}$ We will cheat a little here. We need to rule out the possibility of $g_{E, L}(x)$ having a triple root; just assume it here.
 ${ }^{5}$ It is worthwhile to think about why the crucial step D3 holds over an arbitrary field.

