Math 412. Adventure sheet on elliptic curves

DEFINITION: A (real, affine) elliptic curve is the solution set in R? to an equation of the form
y? = 234 ax + b for real constants a, b € R that satisfy the technical assumption that 4a> +27b* # 0.

NOTATION: We write E to refer to the elliptic curve that corresponds to the solution set in R? of
fe(z,y) =vy* — (2* + ax + b) = 0.

Elliptic curves have an interesting operation on them. Given a point P € F, set P’ to be the reflection
of P over the x-axis. Given two points P # () € F, define P x () as follows: take the line through P
and (), and let R be the other point of intersection of F with that line. Set P x Q = R/.

A. PLAYING WITH ELLIPTIC CURVES.

(1) Pick a couple of points P and () on one of your elliptic curves, and compute P’ and P * ().

(2) Explain why * is commutative.

(3) Take the solution set of y = 2, and try to do the rule (—)’ as defined above. Does this work?

(4) Take the solution set of z = y?2, and try to do the rule (—)’ as defined above. Does this work?

(5) Take the solution set of z = 12, and try to do the rule x as defined above. Does this work?

(6) In the diagram, compute Ax B, BxC, Ax(B* (') and (A% B)xC. What do you observe? What
do you suspect about the operation x?

(7) Explain why P x P doesn’t make any sense using the definition above.

(8) Fix a point P € E. What happens if you try to compute P x () for points () getting closer and
closer to P? Come up with a reasonable rule for P x P.

Solution.

(1) OK!

(2) It answer only depends on the line going through P and (), which is quite the same as the line
going through () and P.

(3) No way! This rule takes you off of the curve.

(4) Yeah, this one is OK.

(5) No way! A line intersects a parabola in only two points.

(6) Wow! It looks associative.

(7) There’s only one point, and there are infinitely many lines through a point.

(8) They approach a tangent line. A reasonable rule for P x P is to let R be the third point on the
tangent line to P, and set P x P = R/.

B. MAKING A GROUP FROM AN ELLIPTIC CURVE: Let E be an elliptic curve, and E* = F U {0},
where oo is an extra element.! We will say that “the line through P and co” for any point P € E is the
vertical line through P.
(1) Show that, if we try to use the definition of the rule x as given in the intro, then Pxoo = coxP = P
forall P € E.
(2) Set o0’ = oco. Given P € E, can you find an element () € E such that P x Q) = Q x P = 00?
(3) If we want to make E* into a group, what would the identity be? What would the inverses be?

1Intuitively, we can think of co as a point that is infinitely high up in the y-direction, so that it lies on every vertical line.
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(4) If we want to make E™* into a group, what would the elements of order 2 be?

Solution.

(1) If the line through P and oo is the vertical line through P, then it meets the curve at P’. We
get that P x oo = P, and oo x P = P too since it is commutative.

(2) Q@ = P’ works. The line through P and P’ is vertical, so it passes through co. We get
PxP =P xP =00 = 0.

(3) Based on (1), oo would be the right choice for the identity. Based on (2), P’ would be a good
choice for the inverse of P.

(4) This would imply P = P’, so P must be on the z-axis.

We have noticed already that being able to define the rules (—)" and (—) x (—) is something very
special: if you try to do this with most curves, neither rule will make sense.> We will use algebra to see
that these rules are well-defined.

C. VERTICAL LINES INTERSECTING ELLIPTIC CURVES.

(1) Show that if (z,y) € E, then (z, —y) € E.
(2) Let L = {(x,y) | # = ¢} be a vertical line. Show that L N E has at most two points.’

(3) Find, using the pictured examples, examples of vertical lines L such that |[LNE| =0, |[LNE| =1,
and |[L N E| = 2.

Solution.

(1) We need to use the equation. Replacing y with —y leaves y? the same, so this holds. This
justifies P’.

(2) The vertical line is x = c. The intersection of the line and the curve consists of points with
x = cand y* = ¢ + ac + b. This gives at most two points.

(3) OK!

D. NONVERTICAL LINES INTERSECTING ELLIPTIC CURVES: Let L = {(x,y) | y = mz + d} be a line
that is not vertical.

(1) Show that the z-coordinates of points in L N E are solutions to fg(z, mx + d).

(2) With the notation of (1), show that fz(z, mz + d) is a polynomial in x of degree (exactly) 3.
Conclude that |[L N E| < 3.

(3) Show that if L is a line that is not vertical, and |L N E| > 2, then fg(z, mz + d) either has three
distinct roots, or has two roots, one of which has multiplicity two.

Solution.

(1) This just follows from substitution.
Q) felr,mr+d) = (mx+d)? — 2* —axr — b= —2® + m?2® + (2md — a)x + (d®> — b). This
has degree three, so there are at most three different x-values for solutions. Since all of the

“The fact that * is associative is even more amazing!
3Hint: Plug in x = cinto fg.



solutions live on a nonvertical line, there can be at most one solution for any z-coordinate.
Thus, the intersection contains at most three points.

(3) Suppose that a and b are the x-coordinates of two points in the intersection. We know that
(x — a)(x — b) divides fg(z, mx + d) of degree three, and the quotient has degree one, so
there is a third linear factor. Either this gives a third solution, or a repetition of a or b as a
root.

FACT: If L = {(x,y) | y = ma + d}, then the polynomial g;, g(z) = fr(x, mz + d) has z; as a
double root if and only if L is tangent to £ at (z¢, mxy + d).

If ' = {(x,y) | * = ¢}, then the polynomial g,/ g(y) = fr(c,y) has y, as a double root if and
only if L' is tangent to E at (c, yo).

E. THE GROUP RULE ON E*.

(1) Let P and () be distinct points in £ with P £ P’, and let L be the line through P and ). Show
that one of the following happens:
(a) L intersects F in a third point (and no more).
(b) L is tangent to P and does not intersect £ in any other point.
(c) L is tangent to () and does not intersect £ in any other point.
(2) Let P € E. Show that the tangent line to £ through P meets E* in exactly one other point.*

In Case (1a) above, we define P x ) to be R’, where R’ is the third point. In Case (1b), we define
P%(@Q = P’. In Case (1c), we define P x Q = Q'. In Case (2), we define P x P to be R’, where R is the
other point on the line. Finally, P x P’ = oo, and oo acts as the identity.

Solution.

(1) This is just D(2) and D(3) translated with the Fact above.

(2) First, assume that L is not vertical. If g, z(x) has z, as a double root, then (z — z,)? divides
it. The quotient is another linear factor. By our cheating assumption, it gives another root
besides x.

Now, if L is vertical, the only way ¢, (y) has a double root is if there is exactly one root,
in which case L meets £* only at the point and at co.

THEOREM: This operation * makes £* into a group; in particular, it is associative.

F. ELLIPTIC CURVES OVER FINITE FIELDS. Observe that we have interpreted the group operation on
E™ purely algebraically: we can compute intersections of lines with £/ with algebra, and the condition
that a line is tangent to £ has an interpretation in terms of roots of polynomials. Consequently, we can
define elliptic curves over finite fields, and get finite groups from them!’

4We will cheat a little here. We need to rule out the possibility of g () having a triple root; just assume it here.
31t is worthwhile to think about why the crucial step D3 holds over an arbitrary field.



(1) Let IF = Zy,. Consider the elliptic curve over [F
E={(r,y) €EFxF|y*=2"+2r +1}.

Check that P = (0,10) and Q = (3, 1) satisfy P,Q € E.
(2) Compute P x Q.
(3) Compute P x P.

Solution.

(1) We just compute 10> = 03 +2* 0+ 1 and 17 = 3% + 2% 3 + 1.

(2) First we find the line passing through P and Q. Its slope is 3/(—9) = —3, and its intercept is
10, so L is given by y = —3z — 1. We now find solutions to gz 1(z) = (=3z — 1) — 2% —
20 — 1 = —23 — 222 + 42. We already know x = 0 and 2 = 3 are roots. We can divide out
those linear factors to get x — 6 as another linear factor, so x = 6. We plug in to the linear
equation to get y = —3 % 6 — 1 = 3. The third intersection point is (6, 3). Now we flip over
the x-axis (negate the y-coordinate) to get the point (6, 8).

(3) We need to find the line through P that is tangent to it. Unless the line is vertical, it has
the from y = ma + 10 = ma — 1 for some m. The corresponding ¢gg (x) function is
(mz —1)? — 23 — 22 — 1 = —2% + m?2? — (2m + 2)x. For z = 0 to be a double root, we
must have 2m + 2 = 0, so m = 10. Now with m = 10 = —1, we need the third root of this
polynomial. g 1 () = —2® + 22 in this case, so = 1 is the other root. Using y = —x — 1,
we get y = —2, so the other point in the line is (1, —2). Reflecting over the axis, we get
PxP=(1,2).




