
Math 412. Adventure sheet on elliptic curves

DEFINITION: A (real, affine) elliptic curve is the solution set in R2 to an equation of the form
y2 = x3+ax+ b for real constants a, b ∈ R that satisfy the technical assumption that 4a3+27b2 6= 0.

NOTATION: We write E to refer to the elliptic curve that corresponds to the solution set in R2 of
fE(x, y) = y2 − (x3 + ax+ b) = 0.

Elliptic curves have an interesting operation on them. Given a point P ∈ E, set P ′ to be the reflection
of P over the x-axis. Given two points P 6= Q ∈ E, define P ?Q as follows: take the line through P
and Q, and let R be the other point of intersection of E with that line. Set P ? Q = R′.

A. PLAYING WITH ELLIPTIC CURVES.
(1) Pick a couple of points P and Q on one of your elliptic curves, and compute P ′ and P ? Q.
(2) Explain why ? is commutative.
(3) Take the solution set of y = x2, and try to do the rule (−)′ as defined above. Does this work?
(4) Take the solution set of x = y2, and try to do the rule (−)′ as defined above. Does this work?
(5) Take the solution set of x = y2, and try to do the rule ? as defined above. Does this work?
(6) In the diagram, compute A?B, B ?C, A? (B ?C) and (A?B)?C. What do you observe? What

do you suspect about the operation ??
(7) Explain why P ? P doesn’t make any sense using the definition above.
(8) Fix a point P ∈ E. What happens if you try to compute P ? Q for points Q getting closer and

closer to P ? Come up with a reasonable rule for P ? P .

Solution.
(1) OK!
(2) It answer only depends on the line going through P and Q, which is quite the same as the line

going through Q and P .
(3) No way! This rule takes you off of the curve.
(4) Yeah, this one is OK.
(5) No way! A line intersects a parabola in only two points.
(6) Wow! It looks associative.
(7) There’s only one point, and there are infinitely many lines through a point.
(8) They approach a tangent line. A reasonable rule for P ?P is to let R be the third point on the

tangent line to P , and set P ? P = R′.

B. MAKING A GROUP FROM AN ELLIPTIC CURVE: Let E be an elliptic curve, and E∗ = E ∪ {∞},
where∞ is an extra element.1 We will say that “the line through P and∞” for any point P ∈ E is the
vertical line through P .

(1) Show that, if we try to use the definition of the rule ? as given in the intro, then P?∞ =∞?P = P
for all P ∈ E.

(2) Set∞′ =∞. Given P ∈ E, can you find an element Q ∈ E such that P ? Q = Q ? P =∞?
(3) If we want to make E∗ into a group, what would the identity be? What would the inverses be?

1Intuitively, we can think of∞ as a point that is infinitely high up in the y-direction, so that it lies on every vertical line.
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(4) If we want to make E∗ into a group, what would the elements of order 2 be?

Solution.
(1) If the line through P and∞ is the vertical line through P , then it meets the curve at P ′. We

get that P ?∞ = P , and∞ ? P = P too since it is commutative.
(2) Q = P ′ works. The line through P and P ′ is vertical, so it passes through ∞. We get

P ? P ′ = P ′ ? P =∞′ =∞.
(3) Based on (1),∞ would be the right choice for the identity. Based on (2), P ′ would be a good

choice for the inverse of P .
(4) This would imply P = P ′, so P must be on the x-axis.

We have noticed already that being able to define the rules (−)′ and (−) ? (−) is something very
special: if you try to do this with most curves, neither rule will make sense.2 We will use algebra to see
that these rules are well-defined.

C. VERTICAL LINES INTERSECTING ELLIPTIC CURVES.
(1) Show that if (x, y) ∈ E, then (x,−y) ∈ E.
(2) Let L = {(x, y) | x = c} be a vertical line. Show that L ∩ E has at most two points.3

(3) Find, using the pictured examples, examples of vertical lines L such that |L∩E| = 0, |L∩E| = 1,
and |L ∩ E| = 2.

Solution.
(1) We need to use the equation. Replacing y with −y leaves y2 the same, so this holds. This

justifies P ′.
(2) The vertical line is x = c. The intersection of the line and the curve consists of points with

x = c and y2 = c3 + ac+ b. This gives at most two points.
(3) OK!

D. NONVERTICAL LINES INTERSECTING ELLIPTIC CURVES: Let L = {(x, y) | y = mx+ d} be a line
that is not vertical.

(1) Show that the x-coordinates of points in L ∩ E are solutions to fE(x,mx+ d).
(2) With the notation of (1), show that fE(x,mx + d) is a polynomial in x of degree (exactly) 3.

Conclude that |L ∩ E| 6 3.
(3) Show that if L is a line that is not vertical, and |L ∩ E| > 2, then fE(x,mx+ d) either has three

distinct roots, or has two roots, one of which has multiplicity two.

Solution.
(1) This just follows from substitution.
(2) fE(x,mx+ d) = (mx+ d)2 − x3 − ax− b = −x3 +m2x2 + (2md− a)x+ (d2 − b). This

has degree three, so there are at most three different x-values for solutions. Since all of the

2The fact that ? is associative is even more amazing!
3Hint: Plug in x = c into fE .



solutions live on a nonvertical line, there can be at most one solution for any x-coordinate.
Thus, the intersection contains at most three points.

(3) Suppose that a and b are the x-coordinates of two points in the intersection. We know that
(x − a)(x − b) divides fE(x,mx + d) of degree three, and the quotient has degree one, so
there is a third linear factor. Either this gives a third solution, or a repetition of a or b as a
root.

FACT: If L = {(x, y) | y = mx + d}, then the polynomial gL,E(x) = fE(x,mx + d) has x0 as a
double root if and only if L is tangent to E at (x0,mx0 + d).

If L′ = {(x, y) | x = c}, then the polynomial gL′,E(y) = fE(c, y) has y0 as a double root if and
only if L′ is tangent to E at (c, y0).

E. THE GROUP RULE ON E∗.
(1) Let P and Q be distinct points in E with P 6= P ′, and let L be the line through P and Q. Show

that one of the following happens:
(a) L intersects E in a third point (and no more).
(b) L is tangent to P and does not intersect E in any other point.
(c) L is tangent to Q and does not intersect E in any other point.

(2) Let P ∈ E. Show that the tangent line to E through P meets E∗ in exactly one other point.4

In Case (1a) above, we define P ? Q to be R′, where R′ is the third point. In Case (1b), we define
P ? Q = P ′. In Case (1c), we define P ? Q = Q′. In Case (2), we define P ? P to be R′, where R is the
other point on the line. Finally, P ? P ′ =∞, and∞ acts as the identity.

Solution.
(1) This is just D(2) and D(3) translated with the Fact above.
(2) First, assume that L is not vertical. If gL,E(x) has x0 as a double root, then (x− x0)

2 divides
it. The quotient is another linear factor. By our cheating assumption, it gives another root
besides x0.

Now, if L is vertical, the only way gL,E(y) has a double root is if there is exactly one root,
in which case L meets E∗ only at the point and at∞.

THEOREM: This operation ? makes E∗ into a group; in particular, it is associative.

F. ELLIPTIC CURVES OVER FINITE FIELDS. Observe that we have interpreted the group operation on
E∗ purely algebraically: we can compute intersections of lines with E with algebra, and the condition
that a line is tangent to E has an interpretation in terms of roots of polynomials. Consequently, we can
define elliptic curves over finite fields, and get finite groups from them!5

4We will cheat a little here. We need to rule out the possibility of gE,L(x) having a triple root; just assume it here.
5It is worthwhile to think about why the crucial step D3 holds over an arbitrary field.



(1) Let F = Z11. Consider the elliptic curve over F
E = {(x, y) ∈ F× F | y2 = x3 + 2x+ 1}.

Check that P = (0, 10) and Q = (3, 1) satisfy P,Q ∈ E.
(2) Compute P ? Q.
(3) Compute P ? P .

Solution.
(1) We just compute 102 = 03 + 2 ∗ 0 + 1 and 12 = 33 + 2 ∗ 3 + 1.
(2) First we find the line passing through P and Q. Its slope is 3/(−9) = −3, and its intercept is

10, so L is given by y = −3x − 1. We now find solutions to gE,L(x) = (−3x − 1)2 − x3 −
2x− 1 = −x3 − 2x2 + 4x. We already know x = 0 and x = 3 are roots. We can divide out
those linear factors to get x − 6 as another linear factor, so x = 6. We plug in to the linear
equation to get y = −3 ∗ 6 − 1 = 3. The third intersection point is (6, 3). Now we flip over
the x-axis (negate the y-coordinate) to get the point (6, 8).

(3) We need to find the line through P that is tangent to it. Unless the line is vertical, it has
the from y = mx + 10 = mx − 1 for some m. The corresponding gE,L(x) function is
(mx − 1)2 − x3 − 2x − 1 = −x3 +m2x2 − (2m + 2)x. For x = 0 to be a double root, we
must have 2m + 2 = 0, so m = 10. Now with m = 10 = −1, we need the third root of this
polynomial. gE,L(x) = −x3 + x2 in this case, so x = 1 is the other root. Using y = −x− 1,
we get y = −2, so the other point in the line is (1,−2). Reflecting over the axis, we get
P ? P = (1, 2).


