Math 412. Adventure sheet on elliptic curves

DEFINITION: A (real, affine) **elliptic curve** is the solution set in \mathbb{R}^2 to an equation of the form $y^2 = x^3 + ax + b$ for real constants $a, b \in \mathbb{R}$ that satisfy the technical assumption that $4a^3 + 27b^2 \neq 0$.

NOTATION: We write E to refer to the elliptic curve that corresponds to the solution set in \mathbb{R}^2 of $f_E(x,y)=y^2-(x^3+ax+b)=0$.

Elliptic curves have an interesting operation on them. Given a point $P \in E$, set P' to be the reflection of P over the x-axis. Given two points $P \neq Q \in E$, define $P \star Q$ as follows: take the line through P and Q, and let R be the other point of intersection of E with that line. Set $P \star Q = R'$.

A. PLAYING WITH ELLIPTIC CURVES.

- (1) Pick a couple of points P and Q on one of your elliptic curves, and compute P' and $P \star Q$.
- (2) Explain why \star is commutative.
- (3) Take the solution set of $y = x^2$, and try to do the rule (-)' as defined above. Does this work?
- (4) Take the solution set of $x = y^2$, and try to do the rule (-)' as defined above. Does this work?
- (5) Take the solution set of $x = y^2$, and try to do the rule \star as defined above. Does this work?
- (6) In the diagram, compute $A \star B$, $B \star C$, $A \star (B \star C)$ and $(A \star B) \star C$. What do you observe? What do you suspect about the operation \star ?
- (7) Explain why $P \star P$ doesn't make any sense using the definition above.
- (8) Fix a point $P \in E$. What happens if you try to compute $P \star Q$ for points Q getting closer and closer to P? Come up with a reasonable rule for $P \star P$.
- B. MAKING A GROUP FROM AN ELLIPTIC CURVE: Let E be an elliptic curve, and $E^* = E \cup \{\infty\}$, where ∞ is an extra element. We will say that "the line through P and ∞ " for any point $P \in E$ is the vertical line through P.
 - (1) Show that, if we try to use the definition of the rule \star as given in the intro, then $P\star\infty=\infty\star P=P$ for all $P\in E$.
 - (2) Set $\infty' = \infty$. Given $P \in E$, can you find an element $Q \in E$ such that $P \star Q = Q \star P = \infty$?
 - (3) If we want to make E^* into a group, what would the identity be? What would the inverses be?
 - (4) If we want to make E^* into a group, what would the elements of order 2 be?

We have noticed already that being able to define the rules (-)' and $(-) \star (-)$ is something very special: if you try to do this with most curves, neither rule will make sense.² We will use algebra to see that these rules are well-defined.

C. VERTICAL LINES INTERSECTING ELLIPTIC CURVES.

- (1) Show that if $(x, y) \in E$, then $(x, -y) \in E$.
- (2) Let $L = \{(x, y) \mid x = c\}$ be a vertical line. Show that $L \cap E$ has at most two points.³

¹Intuitively, we can think of ∞ as a point that is infinitely high up in the y-direction, so that it lies on every vertical line.

²The fact that \star is associative is even more amazing!

³Hint: Plug in x = c into f_E .

- (3) Find, using the pictured examples, examples of vertical lines L such that $|L \cap E| = 0$, $|L \cap E| = 1$, and $|L \cap E| = 2$.
- D. NONVERTICAL LINES INTERSECTING ELLIPTIC CURVES: Let $L = \{(x,y) \mid y = mx + d\}$ be a line that is *not* vertical.
 - (1) Show that the x-coordinates of points in $L \cap E$ are solutions to $f_E(x, mx + d)$.
 - (2) With the notation of (1), show that $f_E(x, mx + d)$ is a polynomial in x of degree (exactly) 3. Conclude that $|L \cap E| \leq 3$.
 - (3) Show that if L is a line that is not vertical, and $|L \cap E| \ge 2$, then $f_E(x, mx + d)$ either has three distinct roots, or has two roots, one of which has multiplicity two.

FACT: If $L = \{(x,y) \mid y = mx + d\}$, then the polynomial $g_{L,E}(x) = f_E(x,mx+d)$ has x_0 as a double root if and only if L is tangent to E at $(x_0, mx_0 + d)$.

If $L' = \{(x, y) \mid x = c\}$, then the polynomial $g_{L', E}(y) = f_E(c, y)$ has y_0 as a double root if and only if L' is tangent to E at (c, y_0) .

E. The group rule on E^* .

- (1) Let P and Q be distinct points in E with $P \neq P'$, and let L be the line through P and Q. Show that one of the following happens:
 - (a) L intersects E in a third point (and no more).
 - (b) L is tangent to P and does not intersect E in any other point.
 - (c) L is tangent to Q and does not intersect E in any other point.
- (2) Let $P \in E$. Show that the tangent line to E through P meets E^* in exactly one other point.⁴

In Case (1a) above, we define $P \star Q$ to be R', where R' is the third point. In Case (1b), we define $P \star Q = P'$. In Case (1c), we define $P \star Q = Q'$. In Case (2), we define $P \star P$ to be R', where R is the other point on the line. Finally, $P \star P' = \infty$, and ∞ acts as the identity.

Theorem: This operation \star makes E^* into a group; in particular, it is associative.

- F. ELLIPTIC CURVES OVER FINITE FIELDS. Observe that we have interpreted the group operation on E^* purely algebraically: we can compute intersections of lines with E with algebra, and the condition that a line is tangent to E has an interpretation in terms of roots of polynomials. Consequently, we can define elliptic curves over finite fields, and get finite groups from them!⁵
 - (1) Let $\mathbb{F} = \mathbb{Z}_{11}$. Consider the *elliptic curve over* \mathbb{F}

$$E = \{(x, y) \in \mathbb{F} \times \mathbb{F} \mid y^2 = x^3 + 2x + 1\}.$$

Check that P = (0, 10) and Q = (3, 1) satisfy $P, Q \in E$.

- (2) Compute $P \star Q$.
- (3) Compute $P \star P$.

 $^{^4}$ We will cheat a little here. We need to rule out the possibility of $g_{E,L}(x)$ having a triple root; just assume it here.

⁵It is worthwhile to think about why the crucial step D3 holds over an arbitrary field.