Math 412. Adventure sheet on The Division Algorithm

Let \mathbb{Z} denote the set of all integers. There are at least a couple of related things that we mean by divides / division in \mathbb{Z}.
Division Algorithm Theorem: Let $n, d \in \mathbb{Z}$ with $d>0$. There exists unique $q, r \in \mathbb{Z}$ such that

$$
n=q d+r \quad \text { and } \quad 0 \leqslant r<d
$$

Definition: Let $a, b \in \mathbb{Z}$. We say a divides b if there exists $q \in \mathbb{Z}$ such that $b=a q$. Equivalently, in this case, we say a is a divisor or factor of b, or that b is divisible by a, and write $a \mid b$.

A. Division Algorithm Warm Up:

(1) Discuss with your team: You have known the division algorithm since Grade 3. Explain. What did the uniqueness part mean in third grade? What words are used in third grade for q and r ?
(2) Drop the phrase " $0 \leqslant r<d$ " from the statement of the theorem. Is it still true? Prove it or find a counterexample.
(3) Discuss with your team: Describe the main scaffolding (outline) of the proof of the Division Algorithm. What are the two main things to show?

ANSWER:

(1) q is the quotient, r is the remainder.
(2) No! Here's a counterexample to the uniqueness part. $85=21 \times 4+1$ and $85=20 \times 4+5$.
(3) Existence and Uniqueness are the two main pieces. We must show there exists $q, r \in \mathbb{Z}$ such that $n=q d+r$ with $0 \leqslant r<d$. Then separately, we must show that if there is another such expression $n=q^{\prime} d+r^{\prime}$, the $r=r^{\prime}$ and $q=q^{\prime}$.
B. Divisor Warm Up. True or False. Justify.
(1) The integer -4 is a factor of both 24 and 100 .
(2) The integer 1 has exactly two divisors.
(3) The integer 0 has exactly one divisor.
(4) The integer 3 is a divisor of 4.
(5) If $n \in \mathbb{Z}$, then 5 divides $5 n$.
(6) If $n \in \mathbb{R}$, then 5 divides $5 n$.
(7) If a, b, c are integers, $a \mid b$, and $b \mid c$, then $a \mid c$.

ANSWER:

(1) True.
(2) True (± 1).
(3) False (every integer divides 0 since $d \times 0=0$ for every d).
(4) False.
(5) True.
(6) False.
(7) True.
C. The Connection between "divides" and "division Algorithm:" Let n, d be positive integers, and (using the division algorithm) write $n=q d+r$ where $0 \leqslant r<d$. Then d divides n if and only if $r=0$.

ANSWER: We have to prove "the "if" statement and the "only if" statement.
If $r=0$, then $n=q d+0=q d$ for some integer q, so $d \mid n$ by definition of divides.
If $d \mid n$, then $n=m d$ for some integer m. Taking $q=m$ and $r=0$, this gives an expression for $n=q d+r$ with $0 \leqslant r<d$ as in the statement of the division algorithm. Thus, this must be the unique q, r satisfying the division algorithm, so $r=0$.
D. Division Algorithm Proof: Existence. Let n, d be integers with d positive. Define the set \mathcal{S} as follows:

$$
\mathcal{S}:=\{n-d x \mid x \in \mathbb{Z} \text { and } n-d x \geq 0\} .
$$

(1) In the special case $n=17, d=5$, write out some of the elements of \mathcal{S}. Ditto for $n=-33$ and $d=8$.
(2) Prove that \mathcal{S} is non-empty. ${ }^{1}$
(3) Explain why \mathcal{S} has a smallest element. ${ }^{2}$
(4) Ler r be the smallest element of \mathcal{S}. Prove that $r<d$.
(5) Prove the existence part of the Division algorithm.

ANSWER: Read the textbook. proof of Theorem 1.1, pages 5-6, steps 1-3.
E. Division Algorithm Proof: Uniqueness. Let n, d be integers with d positive. Suppose that $n=q d+r$ and $n=q^{\prime} d+r^{\prime}$, where $q, r, q^{\prime}, r^{\prime} \in \mathbb{Z}$ and $0 \leqslant r, r^{\prime}<d$.
(1) Show that $d \mid\left(r-r^{\prime}\right)$.
(2) Show that $\left|r-r^{\prime}\right|<d$. [Hint: Start by observing that, without loss of generality, you can assume that $r^{\prime} \leqslant r$.]
(3) Show that $\left|d\left(q-q^{\prime}\right)\right|<d$. [Hint: Substitute.]
(4) Show that $\left|\left(q-q^{\prime}\right)\right|<1$.
(5) Show that $q=q^{\prime}$.
(6) Show that $r=r^{\prime}$.
(7) Explain how Problem C above and your steps here complete the proof of the Division Algorithm.

ANSWER: Read the textbook. proof of Theorem 1.1, page 6, steps 4.

[^0]
[^0]: ${ }^{1}$ Often, the easiest way to show a set is non-empty is to exhibit an element in it.
 ${ }^{2}$ This follows from the obvious but fancy-sounding Well-Ordering Principal: every non-empty subset of integers which is bounded below has a minimal element. Like most axioms, this is formalized 'common sense."

