Math 412 Adventure sheet on cosets

Definition: Fix a group G and a subgroup K. A right K-coset of K is any subset of G of the form

$$
K \circ b=\{k \circ b \mid k \in K\}
$$

where $b \in G$. Similarly, a left K-coset of K is any set of the form $b \circ K=\{b \circ k \mid k \in K\}$.
Proposition: Fix a group G and a subgroup K. The total number of right K-cosets is equal to the total number of left K-cosets.

Definition: Fix a group G and a subgroup K. The index of K in G is the total number of distinct right K-cosets of K in G. We write this index $[G: K]$.

LaGrange's Theorem: Fix a group G and a subgroup K. Then $|G|=|K|[G: K]$.
Definition: Let $a, b \in G$. We say a is congruent to b modulo K if $a b^{-1} \in K$.
A. Example in the Group of Integers. Let $G=(\mathbb{Z},+)$ and let K be the subgroup generated by 7 .
(1) Verify that $K=7 \mathbb{Z}=\{7 k \mid k \in \mathbb{Z}\}$.
(2) Describe the right K-coset $K+0$.
(3) Explain why the left/right K-coset containing a is the same as the set $[a]_{7} \subseteq \mathbb{Z}$.
(4) Find the index $[G: K]$. Verify LaGrange's theorem.

Solution.

(1) The elements in this subgroup are the integers that can be obtained by adding or subtracting 7 any number of times, so the multiples of 7 .
(2) $K+0=\{7 k \mid k \in \mathbb{Z}\}$.
(3) $K+a=\{7 k+a \mid k \in \mathbb{Z}\}=[a]_{7}$.
(4) $[G: K]=7$, and $|G|=|H|=\infty$, so even though we have some orders that are infinite, Lagrange's Theorem still holds!
B. Example in S_{3}. Consider the subgroup K of S_{3} generated by (12).
(1) List out all the elements of K. What does Lagrange's Theorem predict about the number of right cosets of K ?
(2) Find the right K-coset $K e$. Show that it is the same as the right coset $K(12)$.
(3) Find the right coset $K(23)$. Show that it is the same as the right coset $K(123)$.
(4) Find the right coset $K(13)$. Show that it is the same as the right coset $K(132)$.
(5) Write out all the elements of S_{3} explicitly, grouping them together if they are in the same right K-coset.
(6) Express S_{3} as a disjoint union of right K-cosets. How many right K-cosets are there in total?
(7) Verify Lagrange's Theorem for $K \subseteq S_{3}$.

Solution.

(1) $K e=\{e,(12)\}=K(12)$.
(2) $K(23)=\{(23),(12)(23)\}=\{(23),(123)\}=\{(123),(12)(123)\}=K(123)$.
(3) $K(13)=\{(13),(12)(13)\}=\{(13),(132)\}=\{(132),(12)(131)\}=K(132)$.
(4) $K e=\{e,(12)\}, K(23)=\{(23),(123)\}, K(13)=\{(13),(132)\}$
(5) $S_{3}=K e \cup K(12) \cup K(13)$.
(6) $\left|S_{3}\right|=6=3 \times 2=\left[S_{3}: K\right]|K|$.
C. Right K-cosets and congruence modulo K. Fix a group G and a subgroup K.
(1) Prove that a is congruent to b modulo K if and only if $a \in K b$. So the set of all elements congruent to $b \bmod K$ is precisely the right coset $K b$.
(2) Prove that congruence modulo K is an equivalence relation.
(3) Discuss: the concept of right K-coset is the group analog of the concept of congruence class modulo an ideal for rings.
(4) Show that if $b \in K a$, then $K a=K b$. Show also that if $b \notin K a$, then $K a \cap K b=\emptyset$. That is, two cosets are either exactly the same subset of G or they do not overlap at all.

Solution.

(1) If a is congruent to b modulo K, then $a b^{-1} \in K$, and $a=a b^{-1} b \in K b$. On the other hand, if $a \in K b$, then $a=k b$ for some $k \in K$. Then $a b^{-1}=k \in K$.
(2) Reflexive: for any $a \in G$, $a a^{-1}=e \in K$, so a is congruent to a modulo K.

Symmetric: for any $a, b \in G$, if $a b^{-1}=e \in K$, then $b a^{-1}=\left(a b^{-1}\right)^{-1} \in K$. So if a is congruent to b modulo K, then b is congruent to a modulo K.

Transitive: suppose that a is congruent to b modulo K and b is congruent to c modulo K. Then $a b^{-1}, b c^{-1} \in K$. Since K is closed for products, $a c^{-1}=\left(a b^{-1}\right)\left(b c^{-1}\right) \in K$, so a is congruent to c modulo K.
(4) Suppose that $b \in K a$, which we have shown is equivalent to a being congruent to b modulo K. Given any element $g \in G, g \in K$ if and only if $g a b^{-1} \in K$ (why?). Then

$$
K b=\{k b \mid k \in K\}=\left\{\left(k a b^{-1}\right) b \mid k \in K\right\}=\{k a \mid k \in K\}=K a .
$$

On the other hand, if $b \notin K a$, then by (1) we know $a b^{-1} \notin K$, and so for every $k_{1}, k_{2} \in K$, $k_{1} a \neq k_{2} b$, or else we could write $a b^{-1}=k_{1}^{-1} k_{2} \in K$. Therefore, $K a \cap K b=\emptyset$.
D. The proof of Lagrange's Theorem. Fix a group G and a subgroup K. Let $a, b \in G$.
(1) Prove that there is a bijection

$$
K a \rightarrow K b
$$

given by right multiplication by $a^{-1} b$.
(2) Prove that G is the disjoint union of its distinct right K-cosets, all of which have cardinality $|K|$.
(3) Prove that if G is finite, then $|G|=[G: K]|K|$.
(4) Conclude that the order of any subgroup K must divide the order of G.
(5) Conclude that the order of any element in G must divide the order of G.

Solution.

(1) The map $K a \rightarrow K b$ given by right multiplication by $a^{-1} b$ has inverse $K b \rightarrow K a$ given by right multiplication by $b^{-1} a$. This is easy to check: $n a \mapsto(n a)\left(a^{-1} b\right) \mapsto(n a)\left(a b^{-1}\right)\left(b^{-1} a\right)=n a$ and $n b \mapsto(n b)\left(b^{-1} a\right) \mapsto(n b)\left(b^{-1} a\right)\left(a^{-1} b\right)=n b$ so these maps are mutually inverse.
(2) We already know that every element of G is in one coset, so G is the disjoint union of its cosets. By (1), each coset has the same cardinality as K.
(3) Each coset has $|K|$ elements. so $|G|=|K|[G: K]$.
(4) Lagrange's Theorem says that $|K|$ divides $|G|$.
(5) The order of an element g is the same as the order of the cyclic subgroupof G generated by g.
E. LEFT VS RIGHT COSETS. Let G be a group and K be a subgroup of G.
(1) With the notation we used in A , is $K+0=0+K$? How about $K+a$ and $a+K$ for some $a \in \mathbb{Z}$?
(2) With the notation we used in B , is $K(123)=(123) K$?
(3) True or False: In an arbitrary group G, for any subgroup $K, K g=g K$ for all $g \in K$.
(4) True or False: In an arbitrary abelian group G, for any subgroup $K, K g=g K$ for all $g \in K$.
(5) True or False: In an arbitrary group G, every right K-coset is a subgroup of G.

Solution.

(1) Yes! In particular, because this group is abelian.
(2) $K(123)=\{(23),(123)\}$ and $(123) K=\{(123),(13)\}$.
(3) False. For a counterexample, consider the subgroup generated by (12) in S_{3}.
(4) True, because g commutes with all the elements in K.
(5) False. In particular, only one of the cosets contains the identity.
F. Fix a subgroup K of a group (G, \circ).
(1) Show that $K e=K=e K$.
(2) Show that for any $a \in G$, there is a bijection $K \longrightarrow K a$.
(3) Prove that $|K \circ a|=|a \circ K|$, even if in general $K \circ a \neq \circ K$.
(4) Prove that if G is finite, the number of left K-cosets is the same as the number of right K-cosets.

Solution.

(1) $K e=\{k e \mid k \in K\}=\{e k \mid k \in K\}=e K$.
(2) The map $k \mapsto k a$ is a bijection, with inverse $b \mapsto b a^{-1}$.
(3) The bijection $k \mapsto k a$ shows that $|K \circ a|=|K|$. Similarly, there is a bijection between K and $a K$.
(4) We have shown that the right K-cosets partition G into subsets of the size $|K|$; that means there must be $\frac{|G|}{|K|}$ right K-cosets. Similarly, the left K-cosets partition G into subsets all of size $|K|$, so there must be $\frac{|G|}{|K|}$ left K-cosets.
G. A cautionary example. Let G be a group and let K be a subgroup. Consider the set G / K of all right K-cosets. It is tempting to try to define a quotient group as we defined quotient rings. That is, we can try to define a binary operation \star on G / K by $(K \circ g) \star(K \circ h):=K(g \circ h)$.
(1) Show that in the example of $7 \mathbb{Z}$ in \mathbb{Z} from A, \star is a well-defined binary operation.
(2) Show that in the example of $K=\langle(12)\rangle$ in S_{3} as in B , \star is not a well-defined binary operation. In fact, there is no natural way to induce a quotient group structure on the set of cosets G / K.
(3) For R_{4} in D_{4} in A, is \star a well-defined binary operation on the set of right cosets D_{4} / R_{4} ? Is $\left(D_{4} / R_{4}, \star\right)$ a group?

Solution.

(1) The operation \star is the operation + we have previously defined on \mathbb{Z}_{7}, and we have shown that is well-defined.
(2) $(123)(123)=(132)$, so if \star is well-defined we should have $K(123) \star K(123)=K(132) \neq$ $K e$. However, $(23) \in K(132)$ as well, and $(23)(23)=e$, which should mean that $K(123) \star$ $K(123)=K e$.
(3) Yes! We will come up with a better justification for this soon; for now, the best we can do is check all possible products.
H. A matrix example. Consider $G=G L_{2}(\mathbb{R})$, the subgroup $K=S L_{2}(\mathbb{R})$, and $A=\left[\begin{array}{cc}1 & 17 \\ 0 & \pi\end{array}\right]$.
(1) Prove that the right K-coset $K A$ in $G L_{2}(\mathbb{R})$ is $\left\{B \in G L_{2}(\mathbb{R}) \mid \operatorname{det} B=\pi\right\}$.
(2) Prove that the left K-coset $A K=K A$.
(3) Prove that the right K-cosets $K C$ and $K D$ are the same in this case if and only if $\operatorname{det} C=\operatorname{det} D$.
(4) What is the index $\left[G L_{2}(\mathbb{R}): S L_{2}(\mathbb{R})\right]$?

Solution.

(1) A matrix B is in $K A$ if and only if B is congruent to A modulo K, which means that $A B^{-1} \in K$. Equivalently,

$$
1=\operatorname{det}\left(B A^{-1}\right)=\operatorname{det}(B) \pi^{-1}
$$

which is equivalent to $\operatorname{det}(B)=\pi$.
(2) A matrix B is in $A K$ if and only if $A^{-1} B \in K$. Equivalently,

$$
1=\operatorname{det}\left(A^{-1} B\right)=\pi^{-1} \operatorname{det}(B)
$$

which is equivalent to $\operatorname{det}(B)=\pi$.
(3) We have shown that $K C=K D$ if and only if C is congruent to D modulo K. So $K C=K D$ if and only if $\operatorname{det}\left(C D^{-1}\right)=1$, or equivalently, by $217, \operatorname{det}(C) \operatorname{det}(D)^{-1}=1$.
(4) It's infinite: there is one coset for each real number.

