Math 412 Adventure sheet on cosets

DEFINITION: Fix a group GG and a subgroup K. A right K-coset of K is any subset of GG of the form
Kob={kob| ke K}
where b € G. Similarly, a left /{-coset of K is any set of the formbo K = {bok | k € K}.

PROPOSITION: Fix a group G and a subgroup K. The total number of right K -cosets is equal to the total
number of left /'-cosets.

DEFINITION: Fix a group (G and a subgroup K. The index of K in (G is the total number of distinct right
K-cosets of K in G. We write this index [G : K].

LAGRANGE’S THEOREM: Fix a group GG and a subgroup K. Then |G| = |K|[G : K].

DEFINITION: Let a,b € G. We say a is congruent to b modulo K if ab™! € K.

A. EXAMPLE IN THE GROUP OF INTEGERS. Let G = (Z, +) and let K be the subgroup generated by 7.
(1) Verify that K = 7Z = {7k|k € Z}.
(2) Describe the right K -coset K + 0.
(3) Explain why the left/right K -coset containing a is the same as the set [a]; C Z.
(4) Find the index [G : K. Verify LaGrange’s theorem.

Solution.

(1) The elements in this subgroup are the integers that can be obtained by adding or subtracting 7
any number of times, so the multiples of 7.

(2) K+0=A{Tk|k € Z}.

3) K+a={Tk+alk € Z} = [als.

4) [G : K] = 7, and |G| = |H| = o0, so even though we have some orders that are infinite,
Lagrange’s Theorem still holds!

B. EXAMPLE IN S3. Consider the subgroup K of S; generated by (12).

(1) List out all the elements of K. What does Lagrange’s Theorem predict about the number of right
cosets of K?

(2) Find the right K -coset Ke. Show that it is the same as the right coset K (12).

(3) Find the right coset K (2 3). Show that it is the same as the right coset K (12 3).

(4) Find the right coset K (13). Show that it is the same as the right coset K (132).

(5) Write out all the elements of S3 explicitly, grouping them together if they are in the same right
K-coset.

(6) Express S5 as a disjoint union of right K'-cosets. How many right K -cosets are there in total?

(7) Verify Lagrange’s Theorem for K C Ss.

Solution.
(1) Ke={e,(12)} = K (12).
(2) K(23)={(23),(12)(23)} ={(23),(123)} ={(123),(12)(123)} = K (123).
() K(13)={(13),(12)(13)} ={(13),(132)} ={(132),(12)(131)} = K (132).
4) Ke={e, (12)}, K (23) ={(23),(123)}, K (13) = {(13),(132)}




(5) S3=KeUK(12)U K(13).
(6) |S5] =6=3x2=[S;: K||K]|.

C. RIGHT K-COSETS AND CONGRUENCE MODULO K. Fix a group G and a subgroup K.

(1) Prove that a is congruent to b modulo K if and only if @ € K. So the set of all elements congruent
to b mod K is precisely the right coset Kb.

(2) Prove that congruence modulo K is an equivalence relation.

(3) Discuss: the concept of right K-coset is the group analog of the concept of congruence class modulo
an ideal for rings.

(4) Show that if b € Ka, then Ka = Kb. Show also that if b ¢ Ka, then Ka N Kb = (). That is, two
cosets are either exactly the same subset of G or they do not overlap at all.

Solution.

(1) If a is congruent to b modulo K, then ab~! € K, and a = ab~'b € Kb. On the other hand, if
a € Kb, then a = kb forsome k € K. Thenab™! =k € K.
(2) Reflexive: forany a € G, aa™! = e € K, s0 a is congruent to a modulo K.
Symmetric: for any a,b € G, if ab™* = e € K, then ba™ = (ab™')"' € K. Soif a is
congruent to b modulo K, then b is congruent to a modulo K.
Transitive: suppose that a is congruent to b modulo K and b is congruent to ¢ modulo K. Then
ab™',bc™ € K. Since K is closed for products, ac™t = (ab™1)(be™!) € K, so a is congruent to
¢ modulo K.
(4) Suppose that b € Ka, which we have shown is equivalent to a being congruent to b modulo K.
Given any element g € GG, g € K if and only if gab~! € K (why?). Then

Kb={kblke K} ={(kab"")b|k € K} = {ka|k € K} = Ka.

On the other hand, if b ¢ Ka, then by (1) we know ab™' ¢ K, and so for every ki, ky € K,
kra # kob, or else we could write ab~' = k; 'k, € K. Therefore, Ka N Kb = .

D. THE PROOF OF LAGRANGE’S THEOREM. Fix a group (G and a subgroup K. Leta,b € G.
(1) Prove that there is a bijection
Ka — Kb
given by right multiplication by a~'b.
(2) Prove that G is the disjoint union of its distinct right K-cosets, all of which have cardinality |K|.
(3) Prove that if G is finite, then |G| = [G : K]|K]|.
(4) Conclude that the order of any subgroup K must divide the order of G.
(5) Conclude that the order of any element in G’ must divide the order of G.

Solution.

(1) The map Ka — Kb given by right multiplication by a~'b has inverse Kb — Ka given by right
multiplication by b~'a. This is easy to check: na — (na)(a='b) — (na)(ab™1)(b~'a) = na and
nb +— (nb)(b~'a) — (nb)(b~'a)(a~'b) = nb so these maps are mutually inverse.

(2) We already know that every element of G is in one coset, so G is the disjoint union of its cosets.
By (1), each coset has the same cardinality as K.

(3) Each coset has | K| elements. so |G| = |K|[G : K].

(4) Lagrange’s Theorem says that | K| divides |G]|.

(5) The order of an element g is the same as the order of the cyclic subgroupof GG generated by g.




E. LEFT VS RIGHT COSETS. Let G be a group and K be a subgroup of G.

(1) With the notation we used in A, is K +0 = 0+ K? How about K + a and a + K for some a € Z?
(2) With the notation we used in B, is K (123) = (123)K?

(3) TRUE OR FALSE: In an arbitrary group G, for any subgroup K, Kg = gK forall g € K.

(4) TRUE OR FALSE: In an arbitrary abelian group G, for any subgroup K, Kg = gK forall g € K.
(5) TRUE OR FALSE: In an arbitrary group G, every right K -coset is a subgroup of G.

Solution.

(1) Yes! In particular, because this group is abelian.

(2) K(123)={(23),(123)}and (123) K = {(123),(13)}.

(3) False. For a counterexample, consider the subgroup generated by (12) in Ss.
(4) True, because g commutes with all the elements in K.

(5) False. In particular, only one of the cosets contains the identity.

F. Fix a subgroup K of a group (G, o).
(1) Show that Ke = K = eK.
(2) Show that for any a € G, there is a bijection K — Ka.
(3) Prove that | o a| = |a o K|, even if in general K o a # oK.
(4) Prove that if G is finite, the number of left K -cosets is the same as the number of right K'-cosets.

Solution.
(1) Ke = {ke|lk € K} = {eklk € K} = eK.
(2) The map k + ka is a bijection, with inverse b — ba™*.
(3) The bijection k +— ka shows that |K o a| = |K|. Similarly, there is a bijection between K and
aK.
(4) We have shown that the right K -cosets partition G into subsets of the size | K |; that means there

must be % right K'-cosets. Similarly, the left K -cosets partition G into subsets all of size | K|,

so there must be % left K -cosets.

G. A CAUTIONARY EXAMPLE. Let GG be a group and let K be a subgroup. Consider the set G/ K of all right
K-cosets. It is tempting to try to define a quotient group as we defined quotient rings. That is, we can try to
define a binary operation x on G/K by (K o g) x (K o h) := K(go h).
(1) Show that in the example of 7Z in Z from A, % is a well-defined binary operation.
(2) Show that in the example of X' = ((12)) in S5 as in B, * is not a well-defined binary operation. In
fact, there is no natural way to induce a quotient group structure on the set of cosets G/ K.
(3) For Ry in D4 in A, is * a well-defined binary operation on the set of right cosets D,/R4? Is
(D4/ Ry, *) a group?

Solution.

(1) The operation « is the operation + we have previously defined on Z;, and we have shown that is
well-defined.




(2) (123)(123) = (132), soif * is well-defined we should have K (123) x K(123) = K(132) #
Ke. However, (23) € K(132) as well, and (23)(23) = e, which should mean that £ (123) %
K(123) = Ke.

(3) Yes! We will come up with a better justification for this soon; for now, the best we can do is
check all possible products.

H. A MATRIX EXAMPLE. Consider G = G Ly(R), the subgroup K = SL,(R), and A = [1 17] .

0
(1) Prove that the right K-coset KAin GLy(R)is {B € GLy(R) | det B = w}.
(2) Prove that the left K-coset AK = KA.

(3) Prove that the right (-cosets KC' and K D are the same in this case if and only if det C' = det D
(4) What is the index [GLo(R) : SLy(R)]?

Solution.

(1) A matrix B isin K Aif and only if B is congruent to A modulo K, which means that AB™! € K.
Equivalently,

1 =det(BA™!) = det(B)r*,
which is equivalent to det(B) = .
(2) A matrix B is in AK if and only if A~ B € K. Equivalently,

1 =det(A™'B) = 7' det(B),
which is equivalent to det(B) = .
(3) We have shown that KC' = KD if and only if C' is congruent to D modulo K. So KC' = KD

if and only if det(C'D™!) = 1, or equivalently, by 217, det(C) det(D)~* = 1.
(4) It’s infinite: there is one coset for each real number.




