
Math 412. Adventure sheet on Compass and straightedge constructions

CONSTRUCTIONS WITH COMPASS AND STRAIGHTEDGE: Athena gives you two marked points in
the plane; we call them (0, 0) and (1, 0). You are allowed to do three things:

• use a straightedge to draw the line between two marked points
• use the compass to draw a circle whose center is a marked point, and with a radius to another

marked point
• mark any point of intersection between lines and circle you draw.

BASIC CONSTRUCTIONS:
• double or triple a length
• halve a length
• draw a perpendicular line

through a point
• bisect an angle

ADVANCED CONSTRUCTIONS:
• draw a parallel line though a point
• moving a segment of a given length onto a

given line starting at a given point
• add or subtract two lengths
• create (γ, ζ) from (γ, 0) and (ζ, 0)
• create (γ, 0) and (ζ, 0) from (γ, ζ)
• take the quotient of two lengths
• multiply two lengths
• take the square root of a length

Here are examples of some of these constructions. Think about the rest or look them up in the book.
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To double the length AB, make a circle
centered at B passing through A, and in-
tersect it with the line of AB. AC has
twice the length.
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To halve the length AB, make a circle
centered at A passing through B and a
circle centered at B passing through A.
These intersect at two points C and D.
The line through CD meets the segment
AB at its midpoint.
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To move the segment AB to the x-axis
starting at C, make a line g parallel to
the x-axis passing through A. Make a
circle centered at A passing through B,
and mark the point of intersection with
g; call it D. Finally, make a line parallel
to AC passing through D. The segment
CE has the same length as AB.
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To make a segment whose length is the
quotient of the lengths of two other seg-
ments, we can assume the given seg-
ments are on the y-axis (P0A) and x-
axis (P0B). Remember that we have the
point P1 = (1, 0) given. Make a line par-
allel toAB through P1, and take its point
of intersection with the y-axis; call it C.
The length of P0C is |P0A|

|P0B| .
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To make a segment whose length is the
square root of P0A, first halve the seg-
ment; call the midpoint B. Take the cir-
cle e with center B passing through A.
Make a line f parallel to the y-axis pass-
ing through P1 = (1, 0). Mark the inter-
section point C of e and f . The length
of the segment P1C is a the square root
of P0A.



DEFINITION: If we can mark a point P = (γ, ζ) by using these rules repeatedly, we say that P is
constructible. We say that a number x is constructible if Q = (γ, 0) is constructible.

Our advanced constructions prove the following theorem (discuss!):

THEOREM 1:
(1) A point P = (x, y) is a constructible point if and only if x and y are constructible numbers.
(2) If γ and ζ are constructible numbers, then so are γ+ ζ , γ− ζ , γζ , γ/ζ , and

√
γ (if γ > 0).

DEFINITION: Let F ⊆ R be a subfield. A quadratic extension field of F is a set of the form

F(
√
k) = {a+ b

√
k | a, b ∈ F} ⊆ R

for some k ∈ F, k > 0, such that k is not a square of an element in F.

DEFINITION: A quadratic extension tower over Q is a sequence of subfields of R
Q ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ft ⊆ R

such that
F1 = Q(

√
k1), F2 = F1(

√
k1), . . . , Ft = Ft−1(

√
kt),

with k1 ∈ Q>0, k2 ∈ (F1)>0, . . . , kt ∈ (Ft−1)>0.

THEOREM 2: A number γ ∈ R is constructible if and only if there is a quadratic extension tower
over Q for which γ ∈ Ft (with notation as above).

THEOREM 3: If γ is a root of an irreducible cubic polynomial in Q[x], then γ is not an element
of any field in a quadratic extension tower over Q.

DOUBLING THE CUBE: Can you construct the base of a cube C with volume 2?
(1) Explain why 3

√
2 is a root of an irreducible cubic polynomial in Q[x].

(2) Use Theorems 2 and 3 to explain why 3
√
2 is not a constructible number.

(3) Explain how it follows from Theorems 2 and 3 that it is impossible to double the cube with
straightedge and compass.

Solution.
(1) It is a root of f(x) = x3 − 2. Since this has degree 3, it is irreducible if it has no roots in

Q. We showed in homework #1 that this is the case.
(2) By Theorem 3, 3

√
2 is not an element of any field in a quadratic extension tower over Q.

By Theorem 2, it is not constructible.
(3) If we could make a segment of length 3

√
2, that would be a constructible number, but it

isn’t!

TRISECTING AN ANGLE: Given an angle, can you divide it into three equal angles?
(1) To show this is impossible, why does it suffice to show that the number cos(20◦) is not con-

structible?



(2) The triple-angle formula for cosine says that cos(3θ) = 4 cos(θ)3 − 3 cos(θ). Show that
cos(20◦) is a root of the polynomial f(x) = 8x3 − 6x+ 1.

(3) Show that f(x) has no rational roots.1 Conclude that f(x) is irreducible.
(4) Explain how it follows from Theorems 2 and 3 that it is impossible to trisect an angle with

straightedge and compass.

Solution.
(1) The point is that we can construct an equilateral triangle, so the angle 60◦ is a valid given

angle. If we could trisect it, we could make the angle 20◦. Intersecting it with the unit
circle would give us the point (cos(20◦), sin(20◦)), which would be constructible. Thus,
if cos(20◦) is not constructible, trisecting the particular angle 60◦ is impossible.

(2) We have, setting x = cos(20◦), 1
2
= cos(60◦) = 4x3 − 3x.

(3) Suppose a
b
, with (a, b) = 1, was a root of f(x) = 8x3 − 6x + 1. Then 8a3−6ab2+b3

b3
= 0,

so b3 = 6ab2 − 8a3 = a(6b2 − 8a2). Since a|b3, any prime that divides a also divides b.
If a 6= 1, then this contradicts that a and b are coprime. If a = 1, then b3 − 6b2 = 8, so
b2(b−2) = 8. If b < 2, b2(b−2) is negative; if b = 2 it is zero, and if b > 2, b2(b−2) ≥ 9,
so there is no solution.

Since f(x) is degree three with no roots, it must be irreducible.
(4) This follows in exactly the same way as part (3) above.

QUADRATIC EXTENSION FIELDS: Let F ⊆ R be a subfield.
(1) Show that2 any quadratic extension field F(

√
k) is a subfield of R.

(2) Show that if x ∈ R is a solution ofAx2+Bx+C = 0 for someA,B,C ∈ F, then x ∈ F(
√
k)

for some k.
(3) Show that the map φ : F(

√
k)→ F(

√
k) given by φ(a+ b

√
k) = a− b

√
k is a ring homomor-

phism, and that φ(f) = f for any element of F.
(4) Use this fact to show that if f(x) is a cubic polynomial with coefficients in F, and f(a +

b
√
k) = 0, then f(a− b

√
k) = 0.3

Solution.
(1) First, we observe that it is a subring of R: 0, 1 ∈ F, so they are in F(

√
k). It is clear that

F(
√
k) is closed under addition, additive inverses, and (foiling out) products. Since it is

a subring of R, it is commutative and 0 6= 1. Finally, since (a + b
√
k)( a−b

√
k

a2−b2k ) = 1, and
a−b
√
k

a2−b2k = a
a2−b2k −

b
a2−b2k

√
k, nonzero elements have additive inverses.

(2) This just follows from the quadratic formula!
(3) We check the second statement first: if f ∈ F, we write f = f + 0

√
k, so φ(f) =

φ(f + 0
√
k) = f − 0

√
k = f .

Now, we check the homomorphism conditions:
• φ(1) = 1;

1Hint: Suppose there is a rational root a/b in lowest terms. Plug in this root, clear denominators, and show that if a
prime divides a, it divides b and vice versa.

2Hint: What is (a+ b
√
k)( a−b

√
k

a2−b2k )?
3Hint: Let α = a+ b

√
k, and compute φ(f(a+ b

√
k)).



• φ((a + b
√
k) + (c + d

√
k)) = φ((a + c) + (b + d)

√
k) = (a + c) − (b + d)

√
k =

(a− b
√
k) + (c− d

√
k) = φ(a+ b

√
k) + φ(c+ d

√
k);

• φ((a+b
√
k)(c+d

√
k)) = φ((ac+bdk)+(ad+bc)

√
k) = (ac+bdk)−(ad+bc)

√
k =

(a− b
√
k)(c− d

√
k) = φ(a+ b

√
k)φ(c+ d

√
k).

(4) Write f(x) = Ax3 +Bx2 + Cx+D. Let α ∈ F(
√
k). We have

0 = φ(0) = φ(f(α)) = φ(Aα3 +Bα2 + Cα+D)

= φ(A)φ(α)3 + φ(B)φ(α)2 + φ(C)φ(α) + φ(D)

= Aφ(α)3 +Bφ(α)2 + Cφ(α) +D = f(φ(α)),

so φ(α) = a− b
√
k is also a root!

INTERSECTION POINTS: Let F ⊆ R be a subfield. Let L1 and L2 be lines through two points with
coordinates in F. Let C1 and C2 be circles whose centers have coordinates in F, and radii are values
of F.

(1) If L1 is not vertical, why are the slope and y-intercept of L1 values of F? What can you say
about the equation of L1 if it is vertical?

(2) Explain why C1 has an equation of the form (x−A)2 + (y −B)2 = C2, where A,B,C ∈ F.
(3) Explain why the intersection point of L1 and L2 (if they are not parallel) has coordinates in F.
(4) Explain why the intersection points of L1 and C1 (if they exist) have coordinates in a quadratic

extension field of F.
(5) Explain why the intersection points of C1 and C2 (if they exist) have coordinates in a quadratic

extension field of F.

Solution.
(1) Let L1 pass through the points (a, b) and (c, d) with a, b, c, d ∈ F, and a 6= c. Then the

slope of L is m = d−b
c−a ∈ F, and the intercept is b − ma ∈ F. If it is a vertical line, the

equation is x = a for some a ∈ F.
(2) If C1 has center (A,B) and radius C, the stated equation is an equation for C1.
(3) Let L1 : y = mx+ b and L2 : y = m′x+ b′ with m,m′, b, b′ ∈ F. Substituting, we get an

equation (m−m′)x = b′− b for the x-coordinate of the intersection, which has a solution
in F, and plugging back into y = mx+ b, we can solve for y in F.

(4) Let L1 : y = mx + b and C1 : (x − A)2 + (y − B)2 = C2, with m, b,A,B,C ∈ F. To
solve for the x-coordinate, substitute in for y to get a quadratic equation for x. Thus, the
x-coordinate lives in F(

√
k) for some k. Then, using the L1 equation, the y-coordinate

also lives in this field F(
√
k).

(5) Let C1 : (x − A)2 + (y − B)2 = C2 and C1 : (x − A′)2 + (y − B′)2 = C ′2 with
A′, B′, C ′ ∈ F. Then, taking the difference, we get an equation where the x2 and y2 terms
cancel; we get the equation of a line L with coefficients in F. Thus, this case follows from
the previous one.

CONSTRUCTIBLE NUMBERS:
(1) Explain why every rational number r ∈ Q is constructible.
(2) Explain why any number in a quadratic extension field of Q is constructible.



(3) Show that, if every number in a subfield F of R is constructible, then every number in any
quadratic extension field F(

√
k) of F is constructible.

(4) Show that any element of r ∈ Ft for a field in a quadratic extension tower over Q is con-
structible.

(5) Show that any constructible number r ∈ R is an element of some field Ft that lies in a
quadratic extension tower.

(6) Conclude the proof of Theorem 2.

Solution.
(1) This is a consequence of Theorem 1: we can construct any natural number or its negative,

and divide any pair of these to get any rational number.
(2) Take a, b, k ∈ Q, with k > 0. We can construct a, b, k,

√
k, b
√
k, and a + b

√
k by Theo-

rem 1. This is every number we seek.
(3) It’s the exact same argument, starting with a, b, k ∈ F, with k > 0.
(4) We apply the last step t times.
(5) Any point we can get in a construction can be made by starting with two points with

rational coordinates, and doing finitely many steps where we take intersection points of
lines and circles. In each of our steps, the coordinates of our points live in the same field or
else in a quadratic extension field. Thus, the points always have coordinates in a quadratic
extension tower over Q.

(6) This is (4) and (5).

CUBIC POLYNOMIALS AND QUADRATIC EXTENSIONS:
(1) Show that if F is a field, F(

√
k) is a quadratic extension, and γ ∈ F(

√
k), then g(x) =

(x−γ)(x−φ(γ)) has coefficients in F (i.e., is a polynomial in F[x]), where φ is the map from
the Quadratic extension fields problem.

(2) Show that if F is a field, F(
√
k) is a quadratic extension, f(x) ∈ F[x] is a cubic polynomial,

and f(x) has a root in F(
√
k), then f(x) has a root in F.4

(3) Show that if γ is a root of an irreducible cubic polynomial in Q[x], then γ is not an element of
any field in a quadratic extension tower over Q.5

(4) Conclude the proof of Theorem 3.

Solution.
(1) Let γ = a + b

√
k with a, b ∈ F. Foil out to find coefficients: the x coefficient is −γ −

φ(γ) = −2a ∈ F, and the unit coefficient is γφ(γ) = a2 − kb2 ∈ F.
(2) By part (4) of the quadratic extension fields problem, φ(γ) is also a root. Since (x − γ)

and (x − φ(γ)) are coprime, the product g(x) divides f(x). The quotient is a degree one
polynomial in F[x], so there must be a root in F.

(3) Following the hint, to obtain a contradiction, suppose γ is constructible, take a quadratic
extension tower and pick Ft such that Ft contains γ but Ft−1 does not. Consider f(x)
as a cubic polynomial in Ft−1[x]. The previous part applies: since it has a root in Ft =

Ft−1(
√
k), it has a root in Ft−1, contradicting the choice of t.

4Hint: Show that the polynomial g(x) from the previous part divides f(x).
5Hint: To obtain a contradiction, suppose γ is constructible, take a quadratic extension tower and pick Ft such that Ft

contains γ but Ft−1 does not.


