Math 412. Adventure sheet on Compass and straightedge constructions

Constructions with compass and straightedge: Athena gives you two marked points in the plane; we call them (0,0) and (1,0). You are allowed to do three things:

- use a straightedge to draw the line between two marked points
- use the compass to draw a circle whose center is a marked point, and with a radius to another marked point
- mark any point of intersection between lines and circle you draw.

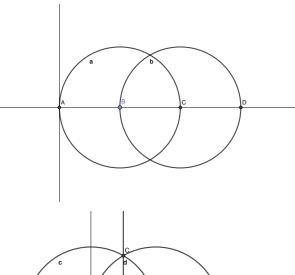
BASIC CONSTRUCTIONS:

- double or triple a length
- halve a length
- draw a perpendicular line through a point
- bisect an angle

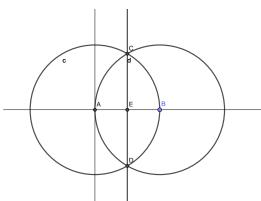
ADVANCED CONSTRUCTIONS:

- draw a parallel line though a point
- moving a segment of a given length onto a given line starting at a given point
- add or subtract two lengths
- create (γ, ζ) from $(\gamma, 0)$ and $(\zeta, 0)$
- create $(\gamma, 0)$ and $(\zeta, 0)$ from (γ, ζ)
- take the quotient of two lengths
- multiply two lengths
- take the square root of a length

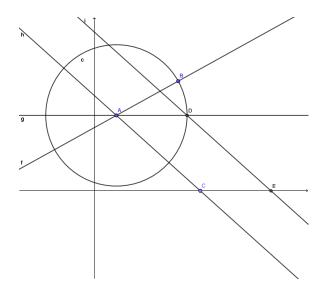
Here are examples of some of these constructions. Think about the rest or look them up in the book.



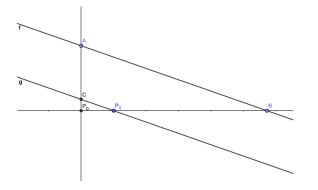
To double the length AB, make a circle centered at B passing through A, and intersect it with the line of AB. AC has twice the length.



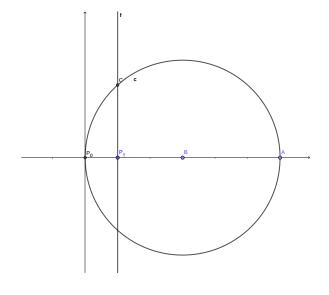
To halve the length AB, make a circle centered at A passing through B and a circle centered at B passing through A. These intersect at two points C and D. The line through CD meets the segment AB at its midpoint.



To move the segment AB to the x-axis starting at C, make a line g parallel to the x-axis passing through A. Make a circle centered at A passing through B, and mark the point of intersection with g; call it D. Finally, make a line parallel to AC passing through D. The segment CE has the same length as AB.



To make a segment whose length is the quotient of the lengths of two other segments, we can assume the given segments are on the y-axis (P_0A) and x-axis (P_0B) . Remember that we have the point $P_1=(1,0)$ given. Make a line parallel to AB through P_1 , and take its point of intersection with the y-axis; call it C. The length of P_0C is $\frac{|P_0A|}{|P_0B|}$.



To make a segment whose length is the square root of P_0A , first halve the segment; call the midpoint B. Take the circle e with center B passing through A. Make a line f parallel to the y-axis passing through $P_1=(1,0)$. Mark the intersection point C of e and f. The length of the segment P_1C is a the square root of P_0A .

DEFINITION: If we can mark a point $P = (\gamma, \zeta)$ by using these rules repeatedly, we say that P is **constructible**. We say that a number x is **constructible** if $Q = (\gamma, 0)$ is constructible.

Our advanced constructions prove the following theorem (discuss!):

THEOREM 1:

- (1) A point P = (x, y) is a constructible point if and only if x and y are constructible numbers.
- (2) If γ and ζ are constructible numbers, then so are $\gamma + \zeta$, $\gamma \zeta$, $\gamma\zeta$, γ/ζ , and $\sqrt{\gamma}$ (if $\gamma > 0$).

DEFINITION: Let $\mathbb{F} \subseteq \mathbb{R}$ be a subfield. A quadratic extension field of \mathbb{F} is a set of the form

$$\mathbb{F}(\sqrt{k}) = \{a + b\sqrt{k} \mid a, b \in \mathbb{F}\} \subseteq \mathbb{R}$$

for some $k \in \mathbb{F}$, k > 0, such that k is not a square of an element in \mathbb{F} .

DEFINITION: A quadratic extension tower over $\mathbb Q$ is a sequence of subfields of $\mathbb R$

$$\mathbb{Q} \subset F_1 \subset F_2 \subset \cdots \subset F_t \subset \mathbb{R}$$

such that

$$F_1 = \mathbb{Q}(\sqrt{k_1}), \ F_2 = F_1(\sqrt{k_1}), \ \dots, \ F_t = F_{t-1}(\sqrt{k_t}),$$

with $k_1 \in \mathbb{Q}_{>0}$, $k_2 \in (F_1)_{>0}$, ..., $k_t \in (F_{t-1})_{>0}$.

THEOREM 2: A number $\gamma \in \mathbb{R}$ is constructible if and only if there is a quadratic extension tower over \mathbb{Q} for which $\gamma \in F_t$ (with notation as above).

THEOREM 3: If γ is a root of an irreducible cubic polynomial in $\mathbb{Q}[x]$, then γ is not an element of any field in a quadratic extension tower over \mathbb{Q} .

DOUBLING THE CUBE: Can you construct the base of a cube C with volume 2?

- (1) Explain why $\sqrt[3]{2}$ is a root of an irreducible cubic polynomial in $\mathbb{Q}[x]$.
- (2) Use Theorems 2 and 3 to explain why $\sqrt[3]{2}$ is not a constructible number.
- (3) Explain how it follows from Theorems 2 and 3 that it is impossible to double the cube with straightedge and compass.

TRISECTING AN ANGLE: Given an angle, can you divide it into three equal angles?

- (1) To show this is impossible, why does it suffice to show that the number $\cos(20^{\circ})$ is not constructible?
- (2) The triple-angle formula for cosine says that $\cos(3\theta) = 4\cos(\theta)^3 3\cos(\theta)$. Show that $\cos(20^\circ)$ is a root of the polynomial $f(x) = 8x^3 6x + 1$.
- (3) Show that f(x) has no rational roots. Conclude that f(x) is irreducible.
- (4) Explain how it follows from Theorems 2 and 3 that it is impossible to trisect an angle with straightedge and compass.

¹Hint: Suppose there is a rational root a/b in lowest terms. Plug in this root, clear denominators, and show that if a prime divides a, it divides b and vice versa.

QUADRATIC EXTENSION FIELDS: Let $\mathbb{F} \subseteq \mathbb{R}$ be a subfield.

- (1) Show that² any quadratic extension field $\mathbb{F}(\sqrt{k})$ is a subfield of \mathbb{R} .
- (2) Show that if $x \in \mathbb{R}$ is a solution of $Ax^2 + Bx + C = 0$ for some $A, B, C \in \mathbb{F}$, then $x \in \mathbb{F}(\sqrt{k})$ for some k.
- (3) Show that the map $\phi: \mathbb{F}(\sqrt{k}) \to \mathbb{F}(\sqrt{k})$ given by $\phi(a+b\sqrt{k}) = a-b\sqrt{k}$ is a ring homomorphism, and that $\phi(f) = f$ for any element of \mathbb{F} .
- (4) Use this fact to show that if f(x) is a cubic polynomial with coefficients in \mathbb{F} , and $f(a+b\sqrt{k})=0$, then $f(a-b\sqrt{k})=0$.

INTERSECTION POINTS: Let $\mathbb{F} \subseteq \mathbb{R}$ be a subfield. Let L_1 and L_2 be lines through two points with coordinates in \mathbb{F} . Let C_1 and C_2 be circles whose centers have coordinates in \mathbb{F} , and radii are values of \mathbb{F} .

- (1) If L_1 is not vertical, why are the slope and y-intercept of L_1 values of \mathbb{F} ? What can you say about the equation of L_1 if it is vertical?
- (2) Explain why C_1 has an equation of the form $(x-A)^2+(y-B)^2=C^2$, where $A,B,C\in\mathbb{F}$.
- (3) Explain why the intersection point of L_1 and L_2 (if they are not parallel) has coordinates in \mathbb{F} .
- (4) Explain why the intersection points of L_1 and C_1 (if they exist) have coordinates in a quadratic extension field of \mathbb{F} .
- (5) Explain why the intersection points of C_1 and C_2 (if they exist) have coordinates in a quadratic extension field of \mathbb{F} .

CONSTRUCTIBLE NUMBERS:

- (1) Explain why every rational number $r \in \mathbb{Q}$ is constructible.
- (2) Explain why any number in a quadratic extension field of \mathbb{Q} is constructible.
- (3) Show that, if every number in a subfield \mathbb{F} of \mathbb{R} is constructible, then every number in any quadratic extension field $\mathbb{F}(\sqrt{k})$ of \mathbb{F} is constructible.
- (4) Show that any element of $r \in F_t$ for a field in a quadratic extension tower over \mathbb{Q} is constructible.
- (5) Show that any constructible number $r \in \mathbb{R}$ is an element of some field F_t that lies in a quadratic extension tower.
- (6) Conclude the proof of Theorem 2.

CUBIC POLYNOMIALS AND QUADRATIC EXTENSIONS:

- (1) Show that if \mathbb{F} is a field, $\mathbb{F}(\sqrt{k})$ is a quadratic extension, and $\gamma \in \mathbb{F}(\sqrt{k})$, then $g(x) = (x \gamma)(x \phi(\gamma))$ has coefficients in \mathbb{F} (i.e., is a polynomial in $\mathbb{F}[x]$), where ϕ is the map from the Quadratic extension fields problem.
- (2) Show that if \mathbb{F} is a field, $\mathbb{F}(\sqrt{k})$ is a quadratic extension, $f(x) \in \mathbb{F}[x]$ is a cubic polynomial, and f(x) has a root in $\mathbb{F}(\sqrt{k})$, then f(x) has a root in \mathbb{F}^4
- (3) Show that if γ is a root of an irreducible cubic polynomial in $\mathbb{Q}[x]$, then γ is not an element of any field in a quadratic extension tower over $\mathbb{Q}^{.5}$
- (4) Conclude the proof of Theorem 3.

²Hint: What is $(a + b\sqrt{k})(\frac{a - b\sqrt{k}}{a^2 - b^2k})$?

³Hint: Let $\alpha = a + b\sqrt{k}$, and compute $\phi(f(a + b\sqrt{k}))$.

⁴Hint: Show that the polynomial g(x) from the previous part divides f(x).

⁵Hint: To obtain a contradiction, suppose γ is constructible, take a quadratic extension tower and pick F_t such that F_t contains γ but F_{t-1} does not.