Math 412. Adventure sheet on §2.1: Congruence in Z.

DEFINITION: Fix a nonzero integer N. We say that a,b € Z are congruent modulo V if
N|(a — b). We write a = b mod N for “a is congruent to b modulo N.” Parse this notation
as a=b mod N: the a and b are the two inputs, and =  mod N is one piece, like a
complicated equals sign.

DEFINITION: Fix a nonzero integer N. For a € Z, the congruence class of ¢ modulo N is the
subset of Z consisting of all integers congruent to a modulo N; That is, the congruence class
of a modulo N is

laly . ={b€Z|b=a mod N}.
Note here that [a]y is the notation for this congruence class— in particular, [a]y stands for a
subset of 7., not a number.

A. WARM-UP: True or False. Justify.
(1) TorF:5=19 mod 7,
(2) TorF: —5 =20 mod 10,
(3) TorF: —11 = —26 mod 5,
(4) T or F: Any two odd integers are congruent modulo 2.
(5) T or F: Any two odd integers are congruent modulo 3.

Solution.
(1) True: 7|(5 — 19)
(2) False: 10 f — 25.
(3) True: 5|15.
(4) True: the difference of odd numbers is even, so divisible by 2.
(5) False: 5 — 3 is not divisible by 3.

B. EASY PROOFS.
(1) Show that Congruence Modulo N is an Equivalence Relation. That is, prove that
(@) a=a mod N (congruence is reflexive);
(b) Ifa=b mod N, thenb =a mod N (congruence is symmetric);
(c) Ifa=b mod Nand b =c¢ mod N ,then a = ¢ mod N (congruence is transitive).
(2) For a fixed N > 0, prove that every a € Z is congruent mod /N to some r € Z such that
0<r<N.!

Solution.

(1) Since N|(a — a), congruence is reflexive. Since N|(a — b) if and only if N|(b— a),
congruence is symmetric. For transitivity, say N|(a — b) and N|(b — ¢). Then N
divides the sum (a —b) + (b —¢) = a — c.

(2) By the division algorithm, a = Nq+ r where 0 <r < N.Soa =r mod N.

C. CONGRUENCE CLASS BASICS.
(1) List out (with the help of some ... ”s) all of the elements in [11],.

'Hint: Division algorithm!



(2) Given two congruence classes, [a]y and [b]x, show that?
either [a]y = [b]y or [a]y N [b]y = 0.
(3) Explain why there are exactly /N equivalence classes modulo N.
(4) Discuss with your team the following important idea: Congruence Classes Mod N
partition the integers into exactly N nonoverlapping subsets of 7. Have we proven

this? What are these sets when N = 2?7 Can you find a nice way to list out these N sets
using the notation [a]x in general? How does it look in set-builder notation?

Solution.

(1) Suppose [a]y N [b]y # 0. Letx € [a]y N [b]y. Then x = @ mod N and z = b
mod N, so a = b mod N by transitivity. We need to show [a]y C [b]n. Take
any y € [a|y. Then y = a mod N, so again by transitivity, y = b mod N. So
[a]y C [b]y. A similar argument shows the reverse inclusion.

(2) This follows from (2) and (3): Every integer is congruent to one of 0,1,... , N — 1

modulo N. So there are at most N congruence classes. But also, [a|y # [b]n for
0 <a,b< N,since if N(a —b) thena — b = 0.

D. TRUE oOR FALSE? JUSTIFY.
(1) 47 € [17]5.
(2) [17]7 N [23]7 = 0.
(3) [17]6 N [19]7 = 0.
(4) For all integers a, [a]go C [a]1o.

Solution.

(1) TRUE: 47 — 17 is a multiple of 5.

(2) TRUE: We show last time that either [a]y = [b]x or [a]y N [b]y = O for all a, b, N.
Since 3 € [17]; but 3 ¢ [23];, these sets are not the same, and therefore, their
intersection is empty.

(3) FALSE. 5 € [17] N [19]7.

(4) TRUE. Let a + 60k be an arbitrary element of [a]go. Then writing a + 60k =
a + 10(6k), we see that it is also in [a]19. So [a]ey C [al10-

ZHint: One form of the contrapositive statement is: if [a]x N [b]y # 0, then [a]y = [b]x. There are standard
techniques you know from 217 to show two sets are the same.



E. FUNCTIONS / OPERATIONS ON CONGRUENCE CLASSES.

(1) Take a second to recall the definition of a function. What makes a rule for turning inputs
into outputs a well-defined function?

(2) Consider the following rule to turn congruence classes modulo 7 into congruence classes
modulo 7:

[a]7 — [“round down a to the nearest multiple of 10”].

Explain carefully why this is not a function from congruence classes modulo 7 to con-
gruence classes modulo 7.

(3) Consider the following different rule to turn congruence classes modulo 7 to congruence
classes modulo 7:

[a]7 = [—a]7.
Explain why this is a function from congruence classes modulo 7 to congruence classes

modulo 7. Explain why this justifies that “taking negatives” is a well-defined function
from congruence classes modulo 7 to itself.

Solution.

(1) There are different ways to define a function, but the key point we have in mind here
is that the output depends only on the input; whenever we give the same input, we
get the same result.

(2) Consider x = [0]; = [14];. Writing out z as [0]; and applying the rule gives [0]7 as
a result, whereas writing = [14]; and applying the rule gives [10]7, and these are
different! Thus, the rule does not only depend on the input (congruence class), but
rather depends nontrivially on how we write the class.

(3) The rule a priori depends on how we write the class, so we need to check that if we
write it in two different ways, we get the same result. Write x = [a]; = [b];. We

need to show that [—a]; = [—b];. We know that 7|(a — b), so there is an integer ¢
such that (a—b) = 7c. Then, ((—a)—(—=b)) = —(a—b) = —=T¢,s0 7|((—a) —(—=b)).
This shows that [—a|; = [—b]7, as required.

F. ADDING & MULTIPLYING CONGRUENCE CLASSES. Fix N # 0. Leta, b, ¢, d € Z.

(1) Show thatifa =¢ mod N andb=d mod N, then (a +b) = (c+d) mod N.

(2) Show thatif a = ¢ mod N andb=d mod N, then (ab) = (cd) mod N.?

(3) Discuss with your workmates how to use (1) and (2) to define a natural addition and
multiplication on the set of congruence classes modulo V. This is delicate: we want to
add/multiply two sets (namely, congruence classes) together to produce a third set. If
you make some choices, how do you know that your operations are well-defined?

(4) There are exactly two congruence classes mod 2: the set of even numbers and the set
of odd numbers. Make addition and multiplication tables for the operations you came
up in (3) on the set {even, odd} of all congruence classes mod 2. Is there an additive
identity? Is there a multiplicative identity?

(5) Compute ([7]5 + [—9]5). Compute [11]3 x [—66]3.

3Try adding and subtracting a convenient quantity from ab — cd.



Solution. (1) and (2) are proven in Theorem 2.2 the book.

(3) is just reinterpreting this fact as a statement about congruence classes, as explained in
the book at the beginning of 2.2 (page 32) and in the statement and proof of Theorem 2.6 in
the book. Reread these sections if (3) is unclear to you.

(4) Modulo 2, the even numbers are the additive identity and the odd numbers are the
multiplicative identity.

) ([7]s + [-9]5) = [3]5 and [11]5 x [—66]5 = [0].




