Math 412. Adventure sheet on $\S 2.1$: Congruence in \mathbb{Z}.

Definition: Fix a nonzero integer N. We say that $a, b \in \mathbb{Z}$ are congruent modulo N if $N \mid(a-b)$. We write $a \equiv b \bmod N$ for " a is congruent to b modulo N." Parse this notation as $a \equiv b \bmod N$: the a and b are the two inputs, and $\equiv \bmod N$ is one piece, like a complicated equals sign.

DEFINITION: Fix a nonzero integer N. For $a \in \mathbb{Z}$, the congruence class of a modulo N is the subset of \mathbb{Z} consisting of all integers congruent to a modulo N; That is, the congruence class of a modulo N is

$$
[a]_{N}:=\{b \in \mathbb{Z} \mid b \equiv a \quad \bmod N\}
$$

Note here that $[a]_{N}$ is the notation for this congruence class- in particular, $[a]_{N}$ stands for a subset of \mathbb{Z}, not a number.
A. Warm-Up: True or False. Justify.
(1) T or F: $5 \equiv 19 \bmod 7$,
(2) T or $\mathrm{F}:-5 \equiv 20 \bmod 10$,
(3) T or $\mathrm{F}:-11 \equiv-26 \bmod 5$,
(4) T or F: Any two odd integers are congruent modulo 2.
(5) T or F: Any two odd integers are congruent modulo 3.

B. EASY PROOFS.

(1) Show that Congruence Modulo N is an Equivalence Relation. That is, prove that
(a) $a \equiv a \bmod N$ (congruence is reflexive);
(b) If $a \equiv b \bmod N$, then $b \equiv a \bmod N($ congruence is symmetric);
(c) If $a \equiv b \bmod N$ and $b \equiv c \bmod N$, then $a \equiv c \bmod N($ congruence is transitive).
(2) For a fixed $N>0$, prove that every $a \in \mathbb{Z}$ is congruent $\bmod N$ to some $r \in \mathbb{Z}$ such that $0 \leq r<N .{ }^{1}$

C. CONGRUENCE CLASS BASICS.

(1) List out (with the help of some "..."s) all of the elements in $[11]_{4}$.
(2) Given two congruence classes, $[a]_{N}$ and $[b]_{N}$, show that ${ }^{2}$

$$
\text { either }[a]_{N}=[b]_{N} \text { or }[a]_{N} \cap[b]_{N}=\emptyset .
$$

(3) Explain why there are exactly N equivalence classes modulo N.
(4) Discuss with your team the following important idea: Congruence Classes Mod N partition the integers into exactly N nonoverlapping subsets of \mathbb{Z}. Have we proven this? What are these sets when $N=2$? Can you find a nice way to list out these N sets using the notation $[a]_{N}$ in general? How does it look in set-builder notation?

D. TRUE OR FALSE? JUSTIFY.

(1) $47 \in[17]_{5}$.
(2) $[17]_{7} \cap[23]_{7}=\emptyset$.
(3) $[17]_{6} \cap[19]_{7}=\emptyset$.
(4) For all integers $a,[a]_{60} \subset[a]_{10}$.

[^0]E. Functions / operations on congruence classes.
(1) Take a second to recall the definition of a function. What makes a rule for turning inputs into outputs a well-defined function?
(2) Consider the following rule to turn congruence classes modulo 7 into congruence classes modulo 7:
$$
[a]_{7} \mapsto[\text { "round down } a \text { to the nearest multiple of } 10 "]_{7} .
$$

Explain carefully why this is not a function from congruence classes modulo 7 to congruence classes modulo 7 .
(3) Consider the following different rule to turn congruence classes modulo 7 to congruence classes modulo 7:

$$
[a]_{7} \mapsto[-a]_{7} .
$$

Explain why this is a function from congruence classes modulo 7 to congruence classes modulo 7. Explain why this justifies that "taking negatives" is a well-defined function from congruence classes modulo 7 to itself.
F. Adding \& Multiplying Congruence Classes. Fix $N \neq 0$. Let $a, b, c, d \in \mathbb{Z}$.
(1) Show that if $a \equiv c \bmod N$ and $b \equiv d \bmod N$, then $(a+b) \equiv(c+d) \bmod N$.
(2) Show that if $a \equiv c \bmod N$ and $b \equiv d \bmod N$, then $(a b) \equiv(c d) \bmod N .{ }^{3}$
(3) Discuss with your workmates how to use (1) and (2) to define a natural addition and multiplication on the set of congruence classes modulo N. This is delicate: we want to add/multiply two sets (namely, congruence classes) together to produce a third set. If you make some choices, how do you know that your operations are well-defined?
(4) There are exactly two congruence classes mod 2: the set of even numbers and the set of odd numbers. Make addition and multiplication tables for the operations you came up in (3) on the set $\{$ even, odd $\}$ of all congruence classes mod 2 . Is there an additive identity? Is there a multiplicative identity?
(5) Compute $\left([7]_{5}+[-9]_{5}\right)$. Compute $[11]_{3} \times[-66]_{3}$.

[^1]
[^0]: ${ }^{1}$ Hint: Division algorithm!
 ${ }^{2}$ Hint: One form of the contrapositive statement is: if $[a]_{N} \cap[b]_{N} \neq \emptyset$, then $[a]_{N}=[b]_{N}$. There are standard techniques you know from 217 to show two sets are the same.

[^1]: ${ }^{3}$ Try adding and subtracting a convenient quantity from $a b-c d$.

