
FREE MODULES

PROPOSITION: Let R be a ring and F be a free module with basis B. Then every element of f ∈ F
admits a unique expression as a linear combination1 of elements of B.

UNIVERSAL MAPPING PROPERTY FOR FREE MODULES: Let R be a ring and F be a free module
with basis B. Let N be an arbitrary R-module. Then for any function j : B → N , there is a unique
R-module homomorphism h : F → N such that h(b) = j(b) for all b ∈ B.

(1)(1) Let R be a ring and n ∈ Z>0. The standard free module of rank n and its standard basis are,
respectively,

Rn =



r1
r2
...
rn

 ∣∣∣ ri ∈ R

 and the set with elements e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . , en =


0
0
...
1

 .

We also write elements in the form (r1, . . . , rn).
(a)(a) Let R = Z[x] and M = R3. Give the unique expression of v = (2x + 3, 1, x4) as a linear

combination of the standard basis.
(b)(b) Let R = Z[x], and M = R3, and N = Z/5[x]. Let h : M → N be the unique R-linear map

such that h(e1) = [2], h(e2) = [0], and h(e3) = x. Compute h(v).

(a)(a) v = (2x+ 3)e1 + e2 + x4e3.
(b)(b) h(v) = (2x+ 3)[2] + [0] + x4 · x = x5 + [4]x+ [1].

(2)(2) Proving things.
(a)(a) Prove the Proposition above.
(b) Prove the UMP for free modules above.

(a)(a) Let f ∈ F . Since B is a basis, there is at least one expression f = r1b1 + · · · + rnbn with
ri ∈ R and bi ∈ B because B generates F . Given another, by including some extra zero
coefficients (to both expressions), we can assume the other uses the same elements of B, so
take f = r′1b1 + · · ·+ r′nbn. Then after subtracting we get

0 = f − f =
∑
i

ribi −
∑
i

r′ibi =
∑
i

(ri − r′i)bi,

so ri − r′i = 0 by linear independence, and hence ri = r′i for all i. This shows uniqueness.
(b) First we show uniqueness. By the Proposition, we can write f =

∑
i ribi in a unique way,

and we must have h(f) = h(
∑

i ribi) =
∑

i rih(bi) =
∑

i rij(bi). This gives a unique value
for each f ∈ F . For existence, we check that the function given by this formula is an R-
module homomorphism. To do it, let f, f ′ ∈ F . Then, after adding some zero coefficients
if necessary, we can write f =

∑
i ribi and f ′ =

∑
i r
′
ibi. Then f + f ′ =

∑
i(ri + r′i)bi,

suing the module axioms. We then have

h(f + f ′) =
∑
i

(ri + r′i)j(bi) =
∑
i

rij(bi) +
∑
i

r′ij(bi) = h(f) + h(f ′).

The check that h is compatible with multiplication by scalars is similar.

1Recall that a linear combination of B is a sum of the form r1b1 + · · ·+ rnbn for some finite list of elements b1, . . . , bn ∈ B
and r1, . . . , rn ∈ R.



THEOREM: Let R be a ring. Let F be a free module with a basis B, and F ′ be a free module with a
basis B′.

(1) If |B| = |B′|, meaning there is a set bijection between B and B′, then F ∼= F ′.
(2) Let R be a commutative ring. If F ∼= F ′, then |B| = |B′|.

DEFINITION: Let R be a commutative ring, and F be a free module. The rank of F is the size of a
basis B of F .

(3)(3) Rank:
(a)(a) What about the Definition above needs justification? Use the Theorem to justify it.
(b)(b) Prove part (1) of the Theorem. (We will prove part (2) later as a consequence of the same result

in the special case of vector spaces.)

(a)(a) That every basis has the same size. That follows from part (2) in the case F = F ′.
(b)(b) Let j : B → B′ be a bijection. Since B′ ⊆ F ′, by the UMP for free modules, there

is a unique R-linear map h : F → F ′ such that h|B = j. Then, using the inverse map
j−1 : B′ → B, since B ⊆ F , the UMP for free modules gives us a unique R-linear map
h′ : F ′ → F such that h′|B′ = j−1. Consider the composition h′◦h : F → F . Its restriction
to B is the identity map. Thus, again by UMP, h′ ◦ h is the identity on F . Along similar
lines, the composition h ◦ h′ : F ′ → F ′ is the identity. It follows that F ∼= F ′.

(4) Let A = M∞(R) be the ring of countably infinite matrices with real entries:

M∞(R) = {[aij]i=1,2,3,...
j=1,2,3,...

| aij 6= 0 for at most finitely many pairs (i, j)}

with usual matrix addition and multiplication; you do not have to prove that this is a ring. Prove2

that A1 ∼= A2 as A-modules. What does this say about the Theorem?

2Hint: Consider the map sending a matrix [aij ] to the pair of matrices ([ai,2j−1], [ai,2j ]) reconstituted from its odd columns
and its even columns.


