PROBLEM SET #4

- (1) Let $K = \mathbb{F}_3(s^2, st, t^2)$. Find a K vector space basis for the derivations from K to K, and for each basis element, evaluate it at the element s^3t .
- (2) Compute the singular locus of the ring $\frac{\mathbb{F}_2(s,t)[x,y,z]}{(x^2+y^2z,y^2+sx^2+tz^2)}.$
- (3) Let K be a field, and R be a K-algebra. Show that if R is finitely generated over K and reduced, then there is a maximal ideal \mathfrak{m} of R such that $R_{\mathfrak{m}}$ is regular.
- (4) Modify the proof of our example of a nonclosed singular locus to show that the ring $W^{-1}S$, where

$$S = K[x_{11}, x_{21}, x_{22}, x_{31}, x_{32}, x_{33}, \cdots] \quad \text{and} \quad W = S \smallsetminus \left(\bigcup_{j=1}^{\infty} (x_{j1}, \dots, x_{jj})\right)$$

is a Noetherian ring of infinite Krull dimension.

- (5) Let (R, \mathfrak{m}) be a Noetherian local ring. Show that every derivation $\hat{\partial} : R \to R$ extends to a unique derivation $\hat{\partial} : \hat{R} \to \hat{R}$.
- (6) Let $R = K[x_1 \dots, x_n]$ be a power series ring over a field K.
 - (a) Show that $\operatorname{Der}_{R|K}(R) = \sum_{i} R \frac{d}{dx_i}$.
 - (b) Show that if K has characteristic p > 0, then for any R-module M, $\operatorname{Der}_{R|K}(M) = \sum_{i} M \frac{d}{dx_{i}}$.
 - (c) What if K has characteristic 0?