PROBLEM SET \#3

(1) Is $\mathbb{Z}[\sqrt[3]{37}]$ a regular ring? What about $\mathbb{Z}[\sqrt[3]{43}]$?
(2) Let R be an A-algebra, $f\left(x_{1}, \ldots, x_{n}\right) \in A\left[x_{1}, \ldots, x_{n}\right]$ a polynomial with coefficients in A, and $r_{1}, \ldots, r_{n}, s_{1}, \ldots, s_{n} \in R$.
(a) Prove the chain rule for the universal derivation: $d_{R \mid A}\left(f\left(r_{1}, \ldots, r_{n}\right)\right)=\sum_{i} \frac{d f}{d x_{i}}\left(r_{1}, \ldots, r_{n}\right) d r_{i}$.
(b) Prove the Taylor expansion formula: $f\left(r_{1}+s_{1}, \ldots, r_{n}+s_{n}\right)=\sum_{\alpha \in \mathbb{N}^{n}} \frac{1}{|\alpha|!} \frac{d^{|\alpha|} f}{d x_{1}^{\alpha_{1}} \cdots d x_{n}^{\alpha_{n}}}\left(r_{1}, \ldots, r_{n}\right) s_{1}^{\alpha_{1}} \cdots s_{n}^{\alpha_{n}}$.
(3) Facts about p-bases/ p-degree:
(a) Let L be a field of positive characteristic. Let T be a p-basis for L. Show that for any e, the set $T^{\left[<p^{e}\right]}$ is a basis for L.
(b) Let $K \subseteq L$ be a finite extension of fields of positive characteristic. Show that $p \operatorname{deg}(K)=$ $p \operatorname{deg}(L)$.
(c) Let $L=K\left(x_{1}, \ldots, x_{m}\right)$ be a field of rational functions in m variables over K. Show that $p \operatorname{deg}(L)=p \operatorname{deg}(K)+m$.
(4) Let k be a field of positive characteristic with a finite p-basis, R be a finitely generated k-algebra, and $\mathfrak{p} \subseteq \mathfrak{q}$ be prime ideals of R. Show that

$$
\operatorname{dim} R_{\mathfrak{q}} / \mathfrak{p} R_{\mathfrak{q}}=p \operatorname{deg}(\kappa(\mathfrak{p}))-p \operatorname{deg}(\kappa(\mathfrak{q}))
$$

(5) Let K be a field.
(a) Let $R=K[x]$ be a polynomial ring in one variable and $M=R^{\oplus \mathbb{N}}$ be a free R-module on a countable basis. Compute the (x)-adic completion of M.
(b) Let $R=K\left[x_{1}, x_{2}, \ldots\right]$ be a polynomial ring in countably many variables and $\mathfrak{m}=\left(x_{1}, x_{2}, \ldots\right)$. Describe the elements of $\hat{R}^{\mathfrak{m}}$. Find an element in the maximal ideal of $\hat{R}^{\mathfrak{m}}$ that is not an element of $\mathfrak{m} \hat{R}^{\mathfrak{m}}$.
(6) Let $K \subseteq L$ be an extension of fields.
(a) Suppose that L is a finitely generated over K as fields. Show that L is formally unramified over K if and only if the extension is separable algebraic.
(b) Show that the finite generation hypothesis is strictly necessary in part (1).

