PROBLEM SET #2

- (1) Compute the singular locus (i.e., set of points at which the variety is singular) of each of the following complex affine varieties¹:
 - (a) $V(x^2 y^2 z) \subseteq \mathbb{C}^3$. (b) $V(x^2 + y^2 + z^2 - 1) \subseteq \mathbb{C}^3$. (c) $V\left(2 \times 2 \text{ minors of } \begin{bmatrix} u & v & w \\ x & y & z \end{bmatrix}\right) \subseteq \mathbb{C}^6$.
- (2) Determine if each of the following local rings is regular or not:
 - (a) $R = \mathbb{Z}[x, y]_{(2,x,y)}/(2 x^2 + y^2).$
 - (b) $R = \mathbb{Z}[x, y]_{(2,x,y)}/(4 x^2 + y^2).$
- (3) * Let $X = V(f_1, \ldots, f_a) \subseteq \mathbb{C}^m$ and $Y = V(g_1, \ldots, g_b) \subseteq \mathbb{C}^n$ be complex affine varieties. Let $\Phi : X \to Y$ be the morphism given by the rule $\Phi(a_1, \ldots, a_m) = (h_1(\underline{a}), \ldots, h_n(\underline{a}))$ for some polynomials $h_1, \ldots, h_n \in \mathbb{C}[x_1, \ldots, x_m]$. Let $S = \mathbb{C}[X]$ and $R = \mathbb{C}[Y]$ be corresponding coordinate rings, \mathfrak{n} the maximal ideal of $a, \mathfrak{m} = \mathfrak{n} \cap R$ the maximal ideal of $\Phi(a)$, and $\phi : R \to S$ the induced map (i.e., $\phi(y_i) = h_i(\underline{x})$).
 - (a) Show that the map $T_a(X) \xrightarrow{\xi_{X,a}} \operatorname{Der}_{R|\mathbb{C}}(R/\mathfrak{n})$ is an isomorphism.

$$v \longmapsto \sum_i v_i \frac{d}{dx_i}|_{x=a}$$

- (b) Show that there is a well-defined vector space map $T_a(\Phi) : T_a(X) \to T_{\Phi(a)}(Y)$ given by $T_a(\Phi)(v) = J(h_1, \dots, h_n)|_a \cdot v.$
- (c) Note that $R/\mathfrak{m} \cong S/\mathfrak{n}$, so we can identify S/\mathfrak{n} as an *R*-module with R/\mathfrak{m} . Show that the following diagram commutes

$$T_{a}(X) \xrightarrow{T_{a}(\Phi)} T_{\Phi(a)}(Y)$$

$$\cong \bigvee_{\xi_{X,a}} \xi_{Y,\Phi(a)}$$

$$\operatorname{Der}_{S|\mathbb{C}}(S/\mathfrak{n}) \xrightarrow{\phi^{*}} \operatorname{Der}_{R|\mathbb{C}}(R/\mathfrak{m}).$$

- (4) * Let K be an algebraically closed field. Let $R \xrightarrow{\phi} S$ be a homomorphism of finitely generated reduced K-algebras, and $X \xrightarrow{\Phi} Y$ the corresponding map of varieties. Show that $\Omega_{S|R} = 0$ if and only if the induced map on tangent spaces $T_a(\Phi) : T_a(X) \to T_{\Phi(a)}(Y)$ is injective for every $a \in X$.
- (5) Let R and S be A-algebras.
 - (a) Show that $\Omega_{(R \times S)|A} \cong \Omega_{R|A} \oplus \Omega_{S|A}$.
 - (b) Show that $\Omega_{(S\otimes_A R)|S} \cong S \otimes_A \Omega_{R|A}$.
- (6) (a) * Show that if R has characteristic p > 0, then $\Omega_{R|\mathbb{Z}} = \Omega_{R|R^p}$.
 - (b) Show that $\Omega_{\mathbb{F}_p[\![x]\!]|\mathbb{F}_p}$ is generated by dx.
 - (c) Is $\Omega_{\mathbb{C}[x]|\mathbb{C}}$ generated by dx? Is it finite generated?

 $^{^{1}}$ You do not need to justify that these are irreducible, and that the dimension of the third is four; however, you should know how to do this!