PROBLEM SET #1

(1) * Basic rules with derivations:
(a) Prove the generalized product rule for derivations: if 0 : R — M is a derivation, then
dar---an) = Z?:l(l_[j;ﬁi a;)o(a;).
(b) Prove the power rule for derivations: if 0 : R — M is a derivation, then d(r"™) = nr"=19(r).
(c) Show that if R is a ring of characteristic p, then the subring R? := {rP | r € R} is in the kernel

of every derivation.

(2) * Let A be aring and S = A[z1,...,z,] be a polynomial ring.
(a) Let R be an N-graded A-algebra such that A lives in degree zero. Show that there is a derivation
on R such that for every homogeneous element f of degree d, d(f) = d - f. This derivation is

called the Fuler operator associated to the grading.

Proof. The rule above describes a well-defined function on R. We need to check that it is A-
linear and satisfies the product rule. Let 7 = > . r; and s = ). 5; be elements of R expressed as

(finite) sums of homogeneous pieces with degree r; = ¢ and a € A. Then

o O(r+s)=002ri+>,;8)=002(ri+s:)) =2, i(ri+s:) =2, iri+ 2,18 = d(r)+ d(s).
o dar) =0(a),;ri) =03, ar) = >, tar; = ay,,ir; = ad(r).
o 0(rs) = 02y iy jr Ti85) = 2 F(Qiy g Ti85) = 2 irisj + 1ijsy = sd(r) +rd(s). O

(b) Let S be, as above,! a polynomial ring over A endowed with the N-grading by the rule
deg(z;) = n;. Express the Euler operator of the grading as an S-linear combination of the

partial derivatives.

Proof. Take 0 =}, niwiﬁ. To check that this agrees with the Euler operator, by A-linearity

it suffices to check on any monomial z{* - - - x%: we get

a a a a
6(1711 e xvzn) = Zniaixll Ty
%

and ), n;a; is just the degree of z{" --- x&~. O

(3) Let A be aring and R = Afz1,...,2,] be a polynomial ring.
(a) Give an explicit formula for the Lie algebra bracket on Dergj4(R).
(b) Does Derpgj4(R) have any nontrivial proper Lie ideals (i.e., A-submodules B such that [d,b] € B
for all be B and d € Dergja(R))?

Proof. Tt is possible in general. For a fun example, over A = 5, we can take Fy [362]d—dgC as a Lie

ideal of Derg,[;]r, (F2[x]). Indeed, note that for any f e Fa[z], 4 (f) € Fo[2?], since any even
power of x picks up a coefficient of two in the derivative. Then given f € Fo[2?] and g € Fo[z?]

we have

LA pd A d 4 d
[f%vg%]_(f%(g) 93 (f))dx_gdx(f)deFQ[x]dm'

T

IFor infinitely many variables, we will get the same formula with a formal sum, but this is not an S-linear combination of
partial derivatives. Oops!
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However, over a field of characteristic zero, there are none! O

(4) Let R be a ring of characteristic p > 0 and ¢ : R — R be a derivation. Show that 0P, i.e., the p-fold

self composition of 0, is a derivation on R.

(5) Let R = C®(R™) be the ring of smooth functions on R™, and m be the maximal ideal consisting of
functions that vanish at some point zy € R™.
(a) * Show that m' consists of the functions f € R such that dd T «~%(f)\x:xo = 0 for all
a1, 0, With0<a; +---+a, <t

Proof. Let J, ={fe R | dal e L (Dlemey = 0 Va1, ... an 10 <ay + - +a, <t}. We'll

an
dxy™

write d* for an n-tuple a as shorthand for the iterated derivative above.

First we show that m! < J,,. We proceed by induction on ¢ with ¢ = 1 immediate from the
definitions. Supposing the inclusion for a given ¢, take f € m‘*! and write f = Y. g;h; with
g; € m! and h; € m. Then each g; € J; by the induction hypothesis. Since f € m! € J;, we have
d*(f)|s, = 0 for all |a| < t. Given some a with |a| =t + 1, we can write d* = d*-% for some j

..
and some b with |b| = ¢. Then ’

- Y tgn) = S = Db @) + Do 00),

We have g; 7% (h;) € m*  J; so the second sum evaluates to zero at zo. Since -4 (m?) € m!~1,
@

we have hiﬁ‘l_(gi) € m’, so the first sum evaluates to 0 at zg as well. Thus, f € JHJl, as required.
For the othejr containment, we will apply Taylor’s Theorem for multivariate functions?. Re-
call that this this says that f agrees with a polynomial (in z; — (x¢);) whose coefficients are
determined by the iterated partial derivatives of f at xg, plus some error term. Beware that
in general a smooth function is not equal to its Taylor series, so we will need to consider the
polynomial plus remainder version. Applying this, if f € J;, we can write

t ~-al ~an ' a
f = Z 171‘1 e l‘n ’ J (1 - S)td (f)|x0+5(17:60)ds7

ail---ay!
|a|=t 1 n 0

where Z; := x; — (z¢);. What is important to observe about this expression is that each

. t '
Jalz) = mjo (1- S)tda(f)|ﬂco+s(ac—$o)ds

is a C* function on R™: we omit the details, but the point is essentially that smoothness lets

us differentiate under the integral sign. Thus, we have
f= D) daBi
la|=t

with j, € R and Z; € m for each i, so f € m'. O

(b) Show that Derpr(R/m) = (m/m?)* = R™ as vector spaces.
As a moral, we conclude that Derpr(R2/m) serves as a model for the tangent space of R™ at xg

constructed from the ring of smooth functions.

20f., Folland’s Advanced Calculus, Theorem 2.68
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* Let R be an A-algebra and I an ideal. Show that if the identity map on I/I? is in the image of
DerR‘A(I/Iz) ==, Homp(I/I?,1/I?), then there is an A-algebra right inverse to the quotient map
7 : R/I? — R/I. Conclude that the following are equivalent:

e Derpa(M) = Homp(I/I%, M) is surjective for all R/I-modules M;

e Derpa(I/1%) == Homp(1/1%,1/1?) is surjective;

e The quotient map R/I?> — R/I has an A-algebra right inverse.

Proof. Suppose that 0 : R — I/I? is a derivation whose restriction to I/I? (after factoring through
R/I? as usual) is the identity map. Viewing 0 as a derivation on R/I* by abuse of notation, note
that K := ker(0) is a subring of R/I? containing A. Let i : K — R/I? be the inclusion map. We
claim that K =~ R/I as A-algebras.

Since —0 is a derivation, the map 1 — 0 : R/I? — R/I? is a ring homomorphism, and (1 — 0) o i
is the identity on K (because K is the kernel of 0). In particular, 1 — @ is surjective. We just need
to see that the kernel of 1 — 0 is I/I%. We have I//I? is contained in the kernel, since for a € I/I?,
(1 —0)(a) = a — d(a) = 0; on the other hand if r € ker(1 — ), then r € im(), so r € I/I?. This
completes the proof.

For the equivalences, the first implies the second since /12 is an R/I-module, the second implies

the third by what we just showed, and the third implies the first by a theorem from class. O

Let R be a ring and M an R-module. Recall that R x M denotes the Nagata idealization of M:
the ring with additive structure R @ M and multiplication (r,m)(s,n) = (rs,rn + sm). Show that

a: R — M is a derivation if and only if (1,a) : R —» Rx M (r — (r,a(r))) is a ring homomorphism.



