PROBLEM SET \#1

(1) * Basic rules with derivations:
(a) Prove the generalized product rule for derivations: if $\partial: R \rightarrow M$ is a derivation, then $\partial\left(a_{1} \cdots a_{n}\right)=\sum_{j=1}^{n}\left(\prod_{j \neq i} a_{i}\right) \partial\left(a_{j}\right)$.
(b) Prove the power rule for derivations: if $\partial: R \rightarrow M$ is a derivation, then $\partial\left(r^{n}\right)=n r^{n-1} \partial(r)$.
(c) Show that if R is a ring of characteristic p, then the subring $R^{p}:=\left\{r^{p} \mid r \in R\right\}$ is in the kernel of every derivation.
(2) ${ }^{*}$ Let A be a ring and $S=A\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring.
(a) Let R be an \mathbb{N}-graded A-algebra such that A lives in degree zero. Show that there is a derivation on R such that for every homogeneous element f of degree $d, \partial(f)=d \cdot f$. This derivation is called the Euler operator associated to the grading.

Proof. The rule above describes a well-defined function on R. We need to check that it is A linear and satisfies the product rule. Let $r=\sum_{i} r_{i}$ and $s=\sum_{i} s_{i}$ be elements of R expressed as (finite) sums of homogeneous pieces with degree $r_{i}=i$ and $a \in A$. Then

- $\partial(r+s)=\partial\left(\sum_{i} r_{i}+\sum_{i} s_{i}\right)=\partial\left(\sum_{i}\left(r_{i}+s_{i}\right)\right)=\sum_{i} i\left(r_{i}+s_{i}\right)=\sum_{i} i r_{i}+\sum_{i} i s_{i}=\partial(r)+\partial(s)$.
- $\partial(a r)=\partial\left(a \sum_{i} r_{i}\right)=\partial\left(\sum_{i} a r_{i}\right)=\sum_{i} i a r_{i}=a \sum_{i} i r_{i}=a \partial(r)$.
- $\partial(r s)=\partial\left(\sum_{k} \sum_{i+j=k} r_{i} s_{j}\right)=\sum_{k} k\left(\sum_{i+j=k} r_{i} s_{j}\right)=\sum_{i, j} i r_{i} s_{j}+r_{i} j s_{j}=s \partial(r)+r \partial(s)$.
(b) Let S be, as above, ${ }^{1}$ a polynomial ring over A endowed with the \mathbb{N}-grading by the rule $\operatorname{deg}\left(x_{i}\right)=n_{i}$. Express the Euler operator of the grading as an S-linear combination of the partial derivatives.

Proof. Take $\partial=\sum_{i} n_{i} x_{i} \frac{d}{d x_{i}}$. To check that this agrees with the Euler operator, by A-linearity it suffices to check on any monomial $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$: we get

$$
\partial\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)=\sum_{i} n_{i} a_{i} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}
$$

and $\sum_{i} n_{i} a_{i}$ is just the degree of $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$.
(3) Let A be a ring and $R=A\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring.
(a) Give an explicit formula for the Lie algebra bracket on $\operatorname{Der}_{R \mid A}(R)$.
(b) Does $\operatorname{Der}_{R \mid A}(R)$ have any nontrivial proper Lie ideals (i.e., A-submodules B such that $[d, b] \in B$ for all $b \in B$ and $\left.d \in \operatorname{Der}_{R \mid A}(R)\right)$?

Proof. It is possible in general. For a fun example, over $A=\mathbb{F}_{2}$, we can take $\mathbb{F}_{2}\left[x^{2}\right] \frac{d}{d x}$ as a Lie ideal of $\operatorname{Der}_{\mathbb{F}_{2}[x] \mid \mathbb{F}_{2}}\left(\mathbb{F}_{2}[x]\right)$. Indeed, note that for any $f \in \mathbb{F}_{2}[x], \frac{d}{d x}(f) \in \mathbb{F}_{2}\left[x^{2}\right]$, since any even power of x picks up a coefficient of two in the derivative. Then given $f \in \mathbb{F}_{2}\left[x^{2}\right]$ and $g \in \mathbb{F}_{2}\left[x^{2}\right]$ we have

$$
\left[f \frac{d}{d x}, g \frac{d}{d x}\right]=\left(f \frac{d}{d x}(g)-g \frac{d}{d x}(f)\right) \frac{d}{d x}=g \frac{d}{d x}(f) \frac{d}{d x} \in \mathbb{F}_{2}\left[x^{2}\right] \frac{d}{d x} .
$$

[^0]However, over a field of characteristic zero, there are none!
(4) Let R be a ring of characteristic $p>0$ and $\partial: R \rightarrow R$ be a derivation. Show that ∂^{p}, i.e., the p-fold self composition of ∂, is a derivation on R.
(5) Let $R=\mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ be the ring of smooth functions on \mathbb{R}^{n}, and \mathfrak{m} be the maximal ideal consisting of functions that vanish at some point $x_{0} \in \mathbb{R}^{n}$.
(a) * Show that \mathfrak{m}^{t} consists of the functions $f \in R$ such that $\left.\frac{d^{a_{1}}}{d x_{1}^{a_{1}}} \cdots \frac{d^{a_{n}}}{d x_{n}^{a_{n}}}(f)\right|_{x=x_{0}}=0$ for all a_{1}, \ldots, a_{n} with $0 \leqslant a_{1}+\cdots+a_{n}<t$.

Proof. Let $J_{n}=\left\{f \in R\left|\frac{d^{a_{1}}}{d x_{1}^{\alpha_{1}}} \cdots \frac{d^{a_{n}}}{d x_{n}^{a_{n}}}(f)\right|_{x=x_{0}}=0 \forall a_{1}, \ldots, a_{n}: 0 \leqslant a_{1}+\cdots+a_{n}<t\right\}$. We'll write d^{a} for an n-tuple a as shorthand for the iterated derivative above.
First we show that $\mathfrak{m}^{t} \subseteq J_{n}$. We proceed by induction on t with $t=1$ immediate from the definitions. Supposing the inclusion for a given t, take $f \in \mathfrak{m}^{t+1}$ and write $f=\sum g_{i} h_{i}$ with $g_{i} \in \mathfrak{m}^{t}$ and $h_{i} \in \mathfrak{m}$. Then each $g_{i} \in J_{t}$ by the induction hypothesis. Since $f \in \mathfrak{m}^{t} \in J_{t}$, we have $\left.d^{a}(f)\right|_{x_{0}}=0$ for all $|a|<t$. Given some a with $|a|=t+1$, we can write $d^{a}=d^{b} \frac{d}{d_{x_{j}}}$ for some j and some b with $|b|=t$. Then

$$
d^{a}(f)=\sum_{i} d^{a}\left(g_{i} h_{i}\right)=\sum_{i} d^{b} \frac{d}{d_{x_{j}}}\left(g_{i} h_{i}\right)=\sum_{i} d^{b}\left(h_{i} \frac{d}{d_{x_{j}}}\left(g_{i}\right)\right)+\sum_{i} d^{b}\left(g_{i} \frac{d}{d_{x_{j}}}\left(h_{i}\right)\right) .
$$

We have $g_{i} \frac{d}{d_{x_{j}}}\left(h_{i}\right) \in \mathfrak{m}^{t} \subseteq J_{t}$ so the second sum evaluates to zero at x_{0}. Since $\frac{d}{d_{x_{j}}}\left(\mathfrak{m}^{t}\right) \subseteq \mathfrak{m}^{t-1}$, we have $h_{i} \frac{d}{d_{x_{j}}}\left(g_{i}\right) \in \mathfrak{m}^{t}$, so the first sum evaluates to 0 at x_{0} as well. Thus, $f \in J_{t+1}$, as required. For the other containment, we will apply Taylor's Theorem for multivariate functions ${ }^{2}$. Recall that this this says that f agrees with a polynomial (in $\left.x_{i}-\left(x_{0}\right)_{i}\right)$ whose coefficients are determined by the iterated partial derivatives of f at x_{0}, plus some error term. Beware that in general a smooth function is not equal to its Taylor series, so we will need to consider the polynomial plus remainder version. Applying this, if $f \in J_{t}$, we can write

$$
f=\left.\sum_{|a|=t} \frac{t}{a_{1}!\cdots a_{n}!}{\widetilde{x_{1}}}^{a_{1}} \cdots{\widetilde{x_{n}}}^{a_{n}} \int_{0}^{1}(1-s)^{t} d^{a}(f)\right|_{x_{0}+s\left(x-x_{0}\right)} \mathrm{ds}
$$

where $\widetilde{x_{i}}:=x_{i}-\left(x_{0}\right)_{i}$. What is important to observe about this expression is that each

$$
j_{a}(x):=\left.\frac{t}{a_{1}!\cdots a_{n}!} \int_{0}^{1}(1-s)^{t} d^{a}(f)\right|_{x_{0}+s\left(x-x_{0}\right)} \mathrm{ds}
$$

is a \mathcal{C}^{∞} function on \mathbb{R}^{n} : we omit the details, but the point is essentially that smoothness lets us differentiate under the integral sign. Thus, we have

$$
f=\sum_{|a|=t} j_{a}{\widetilde{x_{1}}}^{a_{1}} \cdots{\widetilde{x_{n}}}^{a_{n}}
$$

with $j_{a} \in R$ and $\widetilde{x_{i}} \in \mathfrak{m}$ for each i, so $f \in \mathfrak{m}^{t}$.
(b) Show that $\operatorname{Der}_{R \mid \mathbb{R}}(R / \mathfrak{m}) \cong\left(\mathfrak{m} / \mathfrak{m}^{2}\right)^{*} \cong \mathbb{R}^{n}$ as vector spaces.

As a moral, we conclude that $\operatorname{Der}_{R \mid \mathbb{R}}(R / \mathfrak{m})$ serves as a model for the tangent space of \mathbb{R}^{n} at x_{0} constructed from the ring of smooth functions.

[^1](6) * Let R be an A-algebra and I an ideal. Show that if the identity map on I / I^{2} is in the image of $\operatorname{Der}_{R \mid A}\left(I / I^{2}\right) \xrightarrow{\text { res }} \operatorname{Hom}_{R}\left(I / I^{2}, I / I^{2}\right)$, then there is an A-algebra right inverse to the quotient map $\pi: R / I^{2} \rightarrow R / I$. Conclude that the following are equivalent:

- $\operatorname{Der}_{R \mid A}(M) \xrightarrow{\text { res }} \operatorname{Hom}_{R}\left(I / I^{2}, M\right)$ is surjective for all R / I-modules M;
- $\operatorname{Der}_{R \mid A}\left(I / I^{2}\right) \xrightarrow{\text { res }} \operatorname{Hom}_{R}\left(I / I^{2}, I / I^{2}\right)$ is surjective;
- The quotient map $R / I^{2} \rightarrow R / I$ has an A-algebra right inverse.

Proof. Suppose that $\partial: R \rightarrow I / I^{2}$ is a derivation whose restriction to I / I^{2} (after factoring through R / I^{2} as usual) is the identity map. Viewing ∂ as a derivation on R / I^{2} by abuse of notation, note that $K:=\operatorname{ker}(\partial)$ is a subring of R / I^{2} containing A. Let $i: K \rightarrow R / I^{2}$ be the inclusion map. We claim that $K \cong R / I$ as A-algebras.

Since $-\partial$ is a derivation, the map $1-\partial: R / I^{2} \rightarrow R / I^{2}$ is a ring homomorphism, and $(1-\partial) \circ i$ is the identity on K (because K is the kernel of ∂). In particular, $1-\partial$ is surjective. We just need to see that the kernel of $1-\partial$ is I / I^{2}. We have $I / / I^{2}$ is contained in the kernel, since for $a \in I / I^{2}$, $(1-\partial)(a)=a-\partial(a)=0$; on the other hand if $r \in \operatorname{ker}(1-\partial)$, then $r \in \operatorname{im}(\partial)$, so $r \in I / I^{2}$. This completes the proof.

For the equivalences, the first implies the second since I / I^{2} is an R / I-module, the second implies the third by what we just showed, and the third implies the first by a theorem from class.
(7) Let R be a ring and M an R-module. Recall that $R \rtimes M$ denotes the Nagata idealization of M : the ring with additive structure $R \oplus M$ and multiplication $(r, m)(s, n)=(r s, r n+s m)$. Show that $\alpha: R \rightarrow M$ is a derivation if and only if $(1, \alpha): R \rightarrow R \rtimes M(r \mapsto(r, \alpha(r)))$ is a ring homomorphism.

[^0]: ${ }^{1}$ For infinitely many variables, we will get the same formula with a formal sum, but this is not an S-linear combination of partial derivatives. Oops!

[^1]: ${ }^{2}$ cf., Folland's Advanced Calculus, Theorem 2.68

