MATH 918 LECTURE NOTES, SPRING 2023

Lecture of January 24, 2023

1. DERIVATIONS

1.1. Definition and first examples. Our goal will be to consider derivatives algebraically.
The usual notion of derivative of a function is a rule that turns certain real-valued or complex-valued
functions into other real-valued or complex-valued functions as follows: at a given point z, we take
F(a) = 7}13; f(y; : i(l’)
This certainly gives us derivative functions on some rings, for example, the ring of infinitely-differentiable
functions on R: .,
C*(R) 2 C*(R)
or the ring of entire functions, i.e., holomorphic, a.k.a. complex-differentiable, functions on the complex
plane:
Holo(C) > Holo(C).
Neither of these is the sort of ring that we usually consider in commutative algebra. In particular, neither is
Noetherian.

Using our familiar rules of differentiation, we might recall that the derivative of a polynomial is a poly-
nomial, and the derivative of a rational function is a rational function. So, we get derivatives on much more
manageable rings:

d d d d
R[z] = R[z], R(z) > R(z), C[z] =>C[z], C(z)-=> C().

To unlock some of the applications of derivatives, we would like to be able to do this as much as possible
over arbitrary rings. We might be optimistic about doing this for arbitrary polynomial rings at least, given
the examples above. To do it, we certainly must get rid of this limit approach, since moving around in fields
like Q or IF,, we certainly will miss out on lots of limits. Of course, when we actually compute the derivative
of a real or complex polynomial, we don’t consider the limit definition anymore, but instead use rules of
derivative. Namely, we have a sum rule, a scalar rule, a product rule, a quotient rule, and a power rule, and
knowing all of these, we easily and limitlessly compute derivatives of any polynomial or rational function
over R or C. Since the quotient rule and power rule (mostly) follow from the product rule, we will hone in
on the first three for our definition of algebraic notion of derivative.

So, our first approximation of the definition of derivation, our notion of derivative, is a function ¢ from a
ring R to itself that satisfies a sum rule, a scalar rule, and a product rule:

o O(r+s)=0(r)+ d(s) for all 7, s € R,
e O(cr) = cd(r) for all r € R and ¢ “constant???”,
e O(rs) =1d(s) + sd(r) for all r, s € R.

There is something we must change (“constant???”) and something else less clear we can/should change.

Let’s be openminded. If R is a ring, let’s let our constants be any reasonable set of elements of R: any

subring A of R. But let’s be even more openminded. Look at the right-hand sides above. To make sense of
1
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them we have to be able to add our outputs together and multiply them by ring elements, but we don’t have

to multiply them with each other. They don’t have to live in R—they just have to live in an R-module.

Definition 1.1. Let R be aring and M be an R-module. A derivation from R to M is a function 0 : R — M
such that

o O(r+s)=0(r)+ d(s) for all 7, s € R,

e O(rs) =1d(s) + sd(r) for all r, s € R.
If R is an A-algebra, then 0 is a derivation over A or an A-linear derivation if in addition

e J(ar) = ad(r) for alla € A and r € R.

Remark 1.2. Recall that R is an A-algebra means that R is equipped with a ring homomorphism ¢ : A — R.
In this case, every R-module is also an A-module by restriction of scalars: am := ¢(a)m; i.e., for A to act
on M, just view elements of A as elements of R via ¢ and do the same action. This is what’s going on in

the right-hand side above. We'll circle back to restriction of scalars soon.

1.1.1. Ezamples of derivations. Let’s consider some examples of derivations to buy into this notion.
First, let’s construct the “usual derivative” for a polynomial or a power series ring, and show it is a

derivation.

Definition 1.3. Let A be a ring and R = A[z] a polynomial ring. We define 7; : R — R by the rule

qd d
e Z xJ = Ejajxj_l.

Similarly, for a power series ring, R = A[z], we define 7= : R — R by the rule

d ; o .
%(Z a;x’) = 2 jajzi~t.
=0 7j=1
Lemma 1.4. The functions % : Alx] — A[z] and % : A[z] — A[z] are A-linear derivations.
dz dz

Proof. In either case, we have a well-defined function returning an object of the same type. The formulas
are the same in both cases, just allowing infinite formal sums for power series, so we’ll deal with both
simultaneously.

Take 7 = Y, _ga;’, s = 3, bja’, and ¢ with a;,b;,c € A. Then

d d . d d
E . Nped) — § j—1 _
d:C (T + 8) d:C (jzo(a’] + b])x ) j:1](aj + b )‘T‘. d.’lf (7") + dI’ (8)7
d d d
- - Jj—1 _ . 7
dx(cr) T (j:EO ca;)x :E (caj)x Cdx (r),

and

T%(S) + 5%(’”) = (Z aixi)(Z Gbzdt) + (Z bjwj)(z ia;zt1)
1=0 j=1 j=0 i=1
= Z Z (aijbj)a"*7 =" + Z Z (ia;bj)x' ™~

k=1i+j=Fk k=1i+j=Fk

Z Z kaibjxi+-j_1

k71i+j*k

d
dm Z Z a;b; %(rs). O

k=0i+j=k



MATH 918 LECTURE NOTES, SPRING 2023 3

Note that we could have written the formula above as %(Zj:o ajzl) = Z?=1 ja;xi~1 as well: it looks

like we have something illegal when j = 0, but the coefficient of zero tells us to ignore it.

Proposition 1.5. Let A be a ring, {X | A € A}, and R = A[X) | A € A] be a polynomial ring. Then the

partial derivatives —3— given by the rule

dX
di)\(; anX%) = Zaloo\aaXo‘*e*

where o € N is an exponent tuple and ey is the unit vector in the A coordinate, are A-linear derivations.
Similarly for the power series ring R = A[X) | A € A].

Proof. Consider R as R'[X], with R' = A[X,, | p € A~ {\}]. Then % is just the “usual derivative” in
this polynomial ring over R’, so it is an R/-linear derivation of R. But since A = R’, this is an A-linear

derivation as well. O

So we can differentiate over any polynomial ring now, e.g., over R = Fa[x]. Let’s not neglect our original

derivatives.
Example 1.6. The standard derivatives
C*(R) 5 ¢ (R)
and
Holo(C) s, Holo(C)
are R-linear and C-linear derivations, respectively.

We haven’t seen examples where we take derivations into “actual” modules yet. It turns out that this is

a natural thing to do. In fact, examples like this appear in calculus before derivations back into the ring!

Example 1.7. Let’s return to old-fashioned derivatives of C* functions. Before we get derivatives of
functions as functions, we start with the notion of derivative at a point, which should just be a number.
Let’s try to realize “derivative at * = xy” for some real number zy, which we’ll write as d%|;c:7;0, as a
derivation on C*(R). The target should be R:

d
%b:% :C*(R) — R,
so we need to view R as a C*(R)-module. A very x = ¢ flavored way of doing so is by the rule
fc= f(zo)e

Another useful way of thinking about this module structure is as the quotient C*(R)/m,,, where m,, is the

maximal ideal consisting of functions with f(zg) = 0. Indeed, the evaluation at 0 map
evy,C*(R) - R

has kernel m,, by definition, and if R has the module structure given above, this map is C*(R)-linear: if
f e C®R) and c € R, then evy,(fc) = f(xo)c = f-c. Of course, if xy changed, we would get a different
module structure.
Back to our derivative. Take f,g € C*(R) and ¢ € R. Note that this ¢ is an element of R € C*(R) as
opposed to R = C*(R)/m,,. Then
d

d d
%'x:wo (f +g) - %L’IJ:JJO f+ %‘w:wo g
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d

d
%‘.’Ezfo Cf = c%b:xo f

and by the product rule
d d d d d
amao (F9) = S@0) (-le=z0 9) + 9(20) (oloman ) = F+ (-lomao 9) + 9 (o laman f)-
Lecture of January 26, 2023
Example 1.8. Other natural uses of derivatives actually take values in modules rather than the ring itself.

Let’s consider R = C*(R3), the ring of infinitely differentiable real valued functions from R3 to R, with

pointwise operations. One has a notion of gradient V of a function:
0 0 0
f(a,y,2) — [% o p—f] :

The output is a vector of three functions in R, so this is a function V : R — R3. It follows from calculus
that this is an R-linear derivation.

Similarly, one sometimes talks about the total derivative of a function f € C*(R?) as

_ 0 g g O
df = axd:v—i— 8ydy+ azdz.

This rule f +— df is a derivation from R to a free R-module with basis dz, dy, dz.

Example 1.9. Let’s try out a slightly more interesting ring. Let’s consider R = C[z,y]/(2? — y3) and

try out % on this ring. Of course, this is a quotient ring, so if this means anything, it means apply this
rule to an equivalence class and take the class of the result. But this is a problem, since 0 = z? + y> and

d—dI(O) =0#2= %(:EQ +9%). So this derivation doesn’t even make sense, and in hindsight, perhaps it looks
a little bit silly to try. But we can actually get by with something surprisingly similar. Let’s write %ko,o)

101‘ lhe ]ule
dx ( ) ) dm

i.e., partial derivative with respect to = at the origin. It is in fact well-defined: we have

d d d
%ko,o)(f +(2® +y°)g) = £|(o,o)(f) + %ko,o)((ﬂﬁ2 +4%)g)

d d d d
= %ko,o)(f) + 9|(0,o)%|(0,0) ($2 + y3) + (xz + 93)‘(0,0)%|(0,0) (9) = %ko,o)(f)

and, along the same lines as previous examples, is a C-linear derivation to C, viewed as a module via the
rule f-¢ = f(0,0)c.

Example 1.10. Let’s end with a boring example. For any A-algebra R and any R-module M, the zero map

is an A-linear derivation from R to M.

1.2. Properties of derivations. Let’s collect some basic properties of derivations. The first includes the

fact that constants go to zero.

Proposition 1.11. Let 0 : R — M be a derivation.
(1) 0(0) = a(1) =0,
(2) d(=r) = —a(r),
(3) The kernel of 0 is a subring of R,
(4) For A< R, 0 is A-linear if and only if A < ker (7).

Proof. (1) 2(0) = 0(0+0) = 2(0) + 0(0), and 0(1) = (1 -1) = 10(1) + 10(1) = 0(1) + d(1); in each case

we cancel.
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(2) 0=0(r —r) = 0d(r) + d(—r), and move J(r) to the other side.

(3) If 0(r) = d(s) =0, then 0(r — s) = d(r) — d(s) = 0 and d(rs) = rd(s) + sd(r) =0

(4) If A < ker(0), a € A, and r € R, then d(ar) = ad(r) + rd(a) = ad(r), so d is A-linear; conversely,
if d(ar) = ad(r) for all a € A and r € R, then rd(a) = 0 for all a € A and r € R, and in particular
d(a) =10(a) = 0. O

Remark 1.12. It follows that every derivation of R into M is Z-linear since every derivation is linear over its

kernel, and its kernel is a subring.
There are lots of ways to make derivations out of other derivations.

Proposition 1.13. Let o,f : R — M be derivations over A, t € R, and v : M — N be an R-module

homomorphism, and ¢ : S — R an A-algebra homomorphism.

(1) a+ B : R— M is a derivation over A,

(2) ta: R — M is a derivation over A,

(3) yoa: R— N is a derivation over A.

(4) ao¢p: S — M is a derivation over A.
Proof. In each case, the map under consideration is definitely A-linear, so we just need to check the product
rule.

(1) (a+ B)(rs) = a(rs) + B(rs) = ra(s) + sa(r) + rB(s) + sB(r) = r(a + B)(s) + s(a + B)(r);

(2) ta(rs) = t(ra(s) + sa(r)) = r(ta(s)) + s(ta(r));

3) (voa)(rs) =~((ra(s) + sa(r)) = ryoa(s) + syoa(r).

(4) (a0 @)(rs) = a(d(r)d(s)) = ¢(s)a(d(r)) + o(r)a(d(s)) = s(a o @)(r) + r(a o ¢)(s), where the last

equality is just recalling that M is a module by restriction of scalars. |

Definition 1.14. Let R be a ring, and M be and R-module. We set Der g (M) to be the module of derivations
of R into M. If R is an A-algebra via ¢ : R — M, we set Dergj4(M) or Dery(M) to be the module of
A-linear derivations of R into M.

These are R-modules as a consequence of the proposition above.
Example 1.15. If Ais aring and R = A[z1,...,z,] is a polynomial ring over A, then for any fi,..., fn € R,
d .
Yo fige s R

T Zz 1fzd9(:1

R

is an A-linear derivation on R.

If M is an R-module, then for any mg,...,m, € M, the map

mif-: R——= M

TH* m;

d
is an A-linear derivation, since it is the composition of the derivation R ", R and the R-linear map

R ™ M; adding these, the map

M

n od .
Zi:l mlH .

THZz ld:v my
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is an A-linear derivation.

Example 1.16. Let’s jack this example up. Let A be a ring, R = A[X) | A € A] a polynomial ring over A,

and {fy | A € A} a sequence of elements in bijection with the variables then the formal sum

d
Y Hho:R—>R
AEA dX)‘

given by r— >3, _, f,\ddTTA gives a well-defined map, since any r € R involves at most finitely many variables,

dr
dXx

is striaghtforward. To check the product rule, take r, s € R; between the two, they involve only finitely many

and hence = 0 for all but finitely many A € A. This map is an A-linear derivation. Indeed, A-linearity
variables, and for these elements, the formula for this derivation agrees with the rule for the finitely many
variables involved. By the last example, the product rule holds.

Similarly, for any R-module M and A-tuple of elements of M, there is a derivation

d
Z my—:R—->M
AEA dX)‘

given by f— >3\, %m,\.

We would like to compute modules of derivations in some examples. The following lemma will help us

recognize when we’re done.

Lemma 1.17. Let R be an A-algebra and {fx | A € A} be a generating set of R as an A-algebra. Let M be
an R-module. Then any A-linear derivation on R is determined by the images of fx. That is, a,3: R —> M
are A-linear derivations with o(fy) = B(fx) for all A, then o = f3.

Proof. We need to show that a(r) = S(r) for any r € R. Any element of R can be written as a sum of
monomial expressions in the f’s; i.e., a sum of terms of the form r = afﬁ\‘l1 e f”: with a € A so it suffices to
show that o and  take e same value on such a monomial r. We proceed by induction on k = p3 + -+ - + piy,.
When k = 0, r € A so a(r) = 0 = B(r). For the inductive step, take k > 0, so WLOG puy # 0; then r = 7' f,,
and
alr’' fr,) =7 a(fr,) + fral)

and likewise for 8. By the starting assumption, a(fy,) = B(f),) and by the induction hypothesis a(r') =
B(r"). The equality follows. O

Theorem 1.18. Let A be a ring and R = A[X) | A € A] be a polynomial ring over A. For any R-module
M, the map
“w
[[\ M — Dch|A(M)

(m)\)A P kaﬁ

is an isomorphism.

Proof. Consider the map v : Dergjs (M) — [[, M given by a — (a(Xx))xea. The previous lemma shows
that v is injective. On the other hand,

(v o m)ma = (X ma—s
A

E)(XA))A = (mx)a-

Thus, u is injective. Then p must be an isomorphism. Indeed, v = (vu)rv = v(ur) and v injective implies

pv is the identity as well. O
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Lecture of January 31, 2023

We can give a description the derivations on any ring now.

Proposition 1.19. Let R be an A-algebra. Write R = S/I with S = A[X\ | Ae A] and I = (f, | yeT).

Let M be an R-module. Then every A-linear derivation 0 from R to M can be written in the form

i
e MA Ty
r=[s] = X\ 7 (s)m

for some unique (my)x € [ [y M. A tuple of elements (my)y induces a well-defined derivation from R to M

if and only if the corresponding derivation 0:8 — M has 5(]‘7) =0 for all ~.

Proof. Let m : S — R be the quotient map. Given an A-linear derivation 0 : R — M, there is an A-
linear derivation w o ¢ : S — M that can be written in the form above by the previous theorem, so any
derivation has this form. Since derivations are addition, such a derivation is well-defined so long as 5([ ) = 0.
This certainly implies that 5( fy) = 0 for all v; conversely, any element of I can be written as }}; s; f; and
5(2Z sifi) = 2 si0(f;) + D fi0(s;), and the first sum is zero by hypothesis and the second since M is an
R-module which is necessarily killed by 1. |

Clz,y]

Py to itself. Any such derivation must be

Example 1.20. Let’s find some C-linear derivations on R =

a map of the form ¢ = 7’1% + T‘dedy where 0 = rd 4 TQ% . Clz,y] — R has 0(z2 + ) = 0, or just as well
o =rd 4 T’Qd% : Clz,y] — C[xz,y] has 0'(2® + y3) € (2® + y3). Since ' (2% + 3?) = 220’ () + 3y%0' (y), we
must have 2zr] + 3y?r € (2 + y3). Here are a couple:
d d d d
3r— + 2y— and 3y?— + 2r—.
dx dy Y

Example 1.21. Let’s look at something simpler: Dercg(C). We can write C = R[z]/(2? + 1), so such a

% %(1’2 +1) € (2% + 1). Since 2z = %(132 + 1) and 2% + 1 are coprime

in R[x], » must be a multiple of 22 + 1, so the corresponding derivation must be the zero map. Thus, there

derivation is of the form r-%- where r

are no R-linear derivations on C.

1.2.1. Lie algebra structure on Derp 4 (R). Even more than a module, there is extra structure on Derg|4(R).
Any two elements of Derpgja(R) have the same source and target, so we can compose them. The result is

essentially never a derivation though.

Example 1.22. In C[z],
d2 d2 d2

However:

Proposition 1.23. Let R be an A-algebra, and o, B € Dergj4(R). Then the map ao8 —Boa: R — R is

an A-linear derivation.
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Proof. A-linearity follows since we have linear combinations or compositions of A-linear maps. Givenr,s € R,
(aB = Ba)(rs) = a(rB(s) + sB(r)) — B(ra(s) + sa(r))
a(rf(s)) + a(sf(r)) — B(ra(s)) — B(sa(r))
= a(r)B(s) + raf(s) + saf(r) + a(s)B(r) — B(r)a(s) —rfa(s) — a(r)f(s) — sBa(r)
=raf(s) + sap(r) — rfa(s) — spa(r)
= r(af = pa)(s) + s(af — fa)(r) 0

We write [a, 8] := a0 8 — o« and call this the commutator of « and . This operation isn’t a product

\_//—\

operation for a ring (we will see soon that it’s not associative), but it gives the structure of a Lie algebra.

Definition 1.24. A Lie algebra over a ring A is an A-module M equipped with an operation [—,—] :
M x M — M such that, for all [;m,n e M and a € A:

o [l +m,n] =[l,n]+[m,n] and [[,m + n] = [I,m] + [I,n],
o [am,n] = a[m n] and [m,an] = a[m,n],
o [m,m] =

[2, [m, ]] [m7 [, 1] + [, [1,m]] = 0.
Example 1.25. If N is an A-module, then E = End 4 () (the collection of A-linear endomorphisms of N)
with bracket [o, 8] := a0 8 — S o« is a Lie algebra over A. The first three conditions are straightforward.

The third follows from associativity of composition: To avoid foiling all these out, note that each term after
expanding is a triple involving [, m, n. The expression above is stable under the permutation [ — m +— n +— [,
so it suffices to check that the triples imn and Inm appear a cancelling number of times. Indeed, Imn appears
with +1 from the first and —1 from the second and Inm appears with —1 from the first and +1 from the

second.

Proposition 1.26. Let R be an A-algebra. The commutator operation endows Dergj4(R) with the structure

of a Lie algebra over A.

Proof. Derg|4(R) is a submodule of End4(R) and the bracket operation is consistent with that on the Lie
algebra End 4 (R), so it suffices to note that it is closed under the bracket operation. O

1.3. Derivations and ideals.

Proposition 1.27. Let R be a ring, and I an ideal. Let 0 : R — M be a derivation. Then o(I"™) < I"" 1M
for all n e N.

Proof. We proceed by induction on n, with n = 1 trivial. Given r € I™, write r = }}, a;b; with a; € -t

and b; € I. Then
= 2 6(albz) = Z ai(?(bi) + Z bﬂ?(az)
Clearly a;0(b;) € I""*M, and by the induction hypothesis d(a;) € I""2M, so b;d(a;) € "1 M. O

It follows that every A-linear derivation ¢ : R — M gives rise, by restriction/quotient, to a well-defined
A-linear map 0 : ["/I"*1 — ["~1M/I"M, and in particular 0 : I/I?> — M /IM.

Proposition 1.28. Let R be an A-algebra, I an ideal, and M an R-module. If IM = 0, then there is an
isomorphism

DerR|A(M) - Der(R/[?,)‘A(M)
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and a well-defined map
Derpa(M) = Der(gys2y|a(M) — Homa(I/I?, M)
induced by restriction.

In fact, this restriction map is better than one might expect!

Proposition 1.29. Let R be an A-algebra, I an ideal, and M an R-module with IM = 0. Then the induced

map 0 : I/I*> — M is R-linear. Thus, one obtains an R-module homomorphism
Dergj4(M) = Der(g/r2)4(M) — Homp(I/I*, M)
induced by restriction.
Proof. Given r € R and a € I/I?, we have d(ra) = rd(a) + ad(r) = rd(a). O
Example 1.30. Consider R = C[zy,...,2,] and m maximal. We have the restriction map
Dergic(R/m) == Hompg(m/m?, R/m).

Since m/m? and R/m are killed by m, these are R/m = C-modules, so the target is just (m/m?)*, where
(—)* denotes C-linear dual. The map is an isomorphism! To see it, note that m = (x; — a1,..., 2, — an)
for some vector a. Write Z; = x; — a;. After a change of coordinates, we can consider R as a polynomial
ring in the 7;’s. Then m/m? is a vector space with basis given by the classes of the #;’s. By our proposition
on derivations on polynomial rings, for any n-tuple of elements in R/m =~ C, there is a unique derivation

sending the corresponding variables there. That’s what it means for the restriction to be an isomorphism!

- d
Zi:/\imi* = ;A¢Tm|z:a

Concretely, the map

is an inverse.

Lecture of February 2, 2023
We actually don’t need the extremely strong hypothesis of polynomial ring in the last example. Let’s

party hard and figure out when, for a module with M = 0, the map
Der(g/2)ja(M) — Hompg(I/I?, M)

is surjective (i.e., every homomorphism from the “I-top” extends to a derivation). A reasonable starting
point is to take M to be I/I?, which is the part of the ring R/I? itself that is definitely killed by 1.

Theorem 1.31. Let R be an A-algebra and I an ideal. Then an A-linear map o : R/I?> — I/I? is an

A-linear deriwvation if and only if the map
R/I2 L R/
r——1r+a(r)
is an A-algebra homomorphism.

Proof. We observe that the map 1+ « is a sum of A-module homomorphisms, and hence A-linear. We just
need to check that the product rule for « lines up with 1 + « respecting multiplication. If « is a derivation,
then

(I+ a)(rs) =rs+a(rs) =rs+ ra(s) + sa(r) =rs + ra(s) + sa(r) + a(r)a(s)

=(r+ar)(s+als)=104+a)(r)(1+ a)(s)
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where we used that a(r), a(s) € I/I? so their product is zero. Conversely, following the equalities above, we

must have a(rs) = ra(s) + sa(r) for the products to agree. O

This theorem gives an interesting and useful new way to think of derivations: they are “perturbations”
of the identity map.

It also allows us to unlock many derivations.

Proposition 1.32. Let R be an A-algebra and I an ideal. Suppose that the quotient map 7 : R/I> — R/I
has an A-algebra right inverse, i.e., there is some A-algebra map T : R/I — R/I* such that wo T is the
identity on R/I. Then for every R-module M with IM = 0, the map

Der g4 (M) = Hompg(I/I?, M)
s surjective.

Proof. Consider the ring homomorphism 7 o7 : R/I? — R/I?. Set a: R/I?> — R/I?> by 7 o — 1. We claim
that the image of « is in I/I?. Indeed, for r € R/I? we have wa(r) = mrr(r) — w(r) = w(r) — 7(r) = 0, so
a: R/I* — I/I? has image in I/I?. But 1 + o = 77 is a ring homomorphism, so « is a derivation, and « as
well. Additionally, if a € I/I?, then m(a) = 0, so —a(a) = (t o7 — 1)(—a) = a. Thus, given ¢ : I/I*> - M
R-linear, ¢ o —av: R/I? — M is an A-linear derivation on R/I? with restriction to I/I? being just ¢. O

Example 1.33. Let R be a finitely generated C-algebra, and m a maximal ideal. Then C € R/m? and
R/m = C, so there is a right inverse of the quotient map R/I?> — R/I. Moreover, R/m? is generated by
m/m? as a C-algebra, since R/m? ~ C ®m/m? (or many other reasons). It follows that the map

Dergic(R/m) = Hompg(m/m*, R/m) = (m/m*)*

is an isomorphism (where the last equality is just because the source and target are (R/m = C)-vector

spaces).

1.4. Quick review of affine varieties. Many of the constructions and questions we will consider will
be motivated geometrically, and we will want to compare and contrast many of our main theorems with
things we encounter in multivariable calculus, manifold theory, analysis, and other disciplines. We’ll want to
remember how to think of rings and ring homomorphisms geometrically. Over C (or an algebraically closed

field) we have the following correspondence:

algebra ‘ geometry
Clz1,. .., xn] cr
reduced finitely-generated C-algebra variety
R:M::C[X] X := solution set of f; =--- = f,, =0
(f IEERRS) f m)
maximal ideal point
my = (21 —a1,...,Tn — ay) a=(ay,...,a,)
r e C[X] polynomial function on X
going modulo m, evaluation at a
C-algebra homomorphism C[X] — C[Y] morphism of varieties ¥ — X
zi = fi((y)) b= (f1(b)- -, fn(D))

Example 1.34. Take R = C[z,y]/(2? — y*). Geometrically, this corresponds to the solution set of #? =

in 2-space. We can only draw the “real” picture, and we’ll have to live with that.
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-4 -3 -2 -1 0 1 2 3 4

Note the corner at (0,0); we will see later that this has something to do with our unexpected derivation

in the example above.

Example 1.35. This business about maps of varieties going the wrong way is a bit disorienting. Let’s try
a couple of examples of this.
e Given a (radical) ideal I < S = C[zy,...,2,], the quotient map S — S/I is given by sending
x; — Z;, so the corresponding map of varieties V(I) — C™ is just the inclusion map.
e Consider C[z,y]/(z? —y?) =~ C[t?,t3] (via z — 3,y > t?) and take the inclusion of rings C[t?,#3] <
C[t]. Under the composition x + t3,y + t2 in C[t], and corresponding map of varieties goes from
C+— V(2% —4?) and sends b — (b3, 0?).

One important thing that is not included in this correspondence is the usual Fuclidean topology on C™
or a subset X < C™ with an open basis given by B.(a) = {z | |z — a|] < €} with the usual norm |- |. We have
the Zariski topology in which the closed sets are subvarieties, but this has no knowledge of what things are
close in the Euclidean sense.

The magic making this all work out so nicely is the Nullstellensatz, which guarantees that maximal ideals
of C[X] all correspond to points of X. In general, we just take the (instead of maximal) prime ideals to be

our points and work from there.

algebra ‘ “geometry”
ring prime spectrum
R Spec(R) = {p | p € R prime ideal}
prime ideal point
maximal ideal closed point
ring homomorphism R — S continuous map ¥ — X
¢ q— ¢~ '(q)

Whereas the correspondence between varieties and reduced f.g. C-algebras was bijective above, the
correspondence between rings and their spectra as topological spaces is far from: in particular, every field
K has Spec(K) a singleton.
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1.4.1. Tangent spaces of varieties. Let’s get to the bottom of this corner business while we’re at it. Let’s
define the tangent space of an affine variety X at a point a, T,(X). For starters, the tangent space of affine

space C™ at a point a will be the vector space C”, thought of as centered at a.

We can recenter our coordinates there as ; := z; —a,;. Now, given a variety X = V(f1,..., fm), for each

fi we look at its linear part near a: we can take its Taylor expansion at a
d .
fi = fila) + Z %Lc:a(fi)(xj — a;) + higher order terms .
j J
Since a € X, fi(a) = 0, and we have

d
fi = Zjl d—x]|z:a(fz)fj + higher order terms ,

so the linear part of f is given by the linear functional V(f;)|z=q - . Then we take T,(X) to be the linear

subspace of T,(C™) cut out by the linear equations V(f1)|z=qv = -+ = V(fm)|z=ev = 0. In particular,
T, (C™) is the kernel of the Jacobian matriz
d%zl‘m:a(fl) %Jr:a(fl)
J(flvvfm)|z=a: )
%J:v:a(fm) %ﬂ w=a(fm)

whose rows are the gradient vectors.
Lecture of February 6, 2023

Example 1.36. Take the parabola X = V(y — (x — 1)? — 2). To compute the tangent space at a = (1,2),

—2(r—-1 0
take the gradient at (1,2), which is l (xo )1 l(1,2) = L}, so the defining equation is 3 = 0.
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Example 1.37. Take the curve X = V(y? — 23). To compute the tangent space at a = (0,0), take the

—322 0
gradient at (0,0), which is 23: ] l0,0) = [0 , so the defining equation is the zero equation. Thus, the
Y

tangent space is all of T, (C?).

We want to understand this tangent space in terms of the algebra of the coordinate ring. Here’s how.

Proposition 1.38. Let X = V(I) be a complex affine variety (with I reduced) and a € X. Let R =
Clx1,...,x,]/I be the coordinate ring of X and m the corresponding maximal ideal. Then there is a C-

vector space isomorphism (m/m2)* =~ T,(X), where (—)* denotes C-vector space dual.

Proof. Let S = C[x1,...,z,] and n be the preimage of m. Set £; = z; — a;; these are the generators of n.
Then the images of the £; form a vector space for n/n?; we have essentially defined T, (C") as the C-vector
space with coordinates 7j; i.e., the dual space to n/n*. So T,(C")* ~ n/n?. We will think of 7,(C")* = n/n?
each as 1 x n row vectors corresponding to the basis £; and T,(C™) as n x 1 column vectors.

For an element f € n, we can write f = V(f)|z=aZ in n/n?, s0 V(f)|z=q is its row vector.

Then T, (X)* corresponds to quotient of the linear functionals on 7,(C™) — C modulo the ones that
vanish on T,(X). But since T, (X) is just the set of vectors v such that V(f;)|z—qv = 0 for all 4, a linear
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functional in T, (C™)* vanishes on T, (X) if and only if it is in the (row) span of V(f;)|z=o. Thus, we have

n/n2 - n
((f17~~~7fm) +n2)/n2 ~ n2 +1I

Finally, by some basic isomorphism theorems, we can identify m/m? =~ n/(n? + I): namely,

T, (X)* =

m n/lI n O
m2 - 02+ 1)1 n2+ 1

Corollary 1.39. Let R = C[X] be the coordinate ring of an affine variety and a € X with associated

mazimal ideal m. Then there is an isomorphism Derpc(R/m) = T,(X).

This description of the tangent space of a variety like so is useful; in fact, in many situations, one defines
the tangent space to an object by using derivations! Clearly this has some advantages as it naturally arises
from X rather than thinking about X inside of C" cut out by some equations.

We say that an irreducible affine variety X is nonsingular at a if dime T, (X) = dim X, and singular
otherwise (in which case “>”" happens).

Lecture of February 9, 2023

From the geometric definition of tangent space, we have the following.

Theorem 1.40 (Jacobian criterion for varieties). Let X < C™ be an irreducible affine variety of dimension
d=n—h. Then
{ae X | X is singular at a}

is equal to the vanishing locus of the h x h-minors of J(f1,..., fm) in X.

Proof. We have that T,(X) = ker(J(f1,..., fm)|z=a), s0 dim(T, (X)) = n — rank(J(f1,..., fm)|z=a), and
so X is singular at a if and only if the rank of J(f1,..., fi)|z=a is less than h. This is equivalent to the
all of the h x h minors of the matrix J(f1,..., fim)|z=« vanishing. This happens at a point a if and only if

each h x h minor of J(f1,..., fm) evaluated at a is zero; i.e., a € X is in the vanishing locus of each h x h

minor. O
Example 1.41. Consider X = V(23 — y2, 2z — 2y). The Jacobian matrix is
322 —2y 0
.
Since X has dimension 1 in 3 space, we consider the 2 x 2-minors
—32% — 2¢%,32%, —2y
sox =0,y =0, and using z = xy, z = 0, and this is the unique singular point on the curve.

Motivated by the geometric case, for a local ring (R, m, k) we define m/m? to be the cotangent space and
Homy(m/m2, k) to be the tangent space of R. We recall that a local ring (R,m, k) is regular dim(R) =
dimk (m/mz)

Example 1.42. If R = C[z1,...,z,]/I is a reduced finitely generated C-algebra, and m is a maximal ideal,
then Ry, is regular if and only if the variety X = V(I) is nonsingular at a = V(m).

Example 1.43. Let R = Z(3). This is a local ring with maximal ideal (2). The dimension of R is the height

of (2) in Z, which is one, and the maximal ideal is generated by one element, so R is regular.
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Example 1.44. Let R = Z[\/g](mﬂ/g). Note that 2,1 + 1/5 generates a maximal ideal in Z[v/5]. The ring
Z[+/5] has dimension one, since it is integral over Z, and we see that R has dimension one as well. One
can check that the maximal ideal (2,1 4+ 4/5) cannot be generated by one element; equivalently that these

elements are Z/2Z-linearly independent modulo the square of this ideal. Thus, R is not regular.

Remark 1.45. Tt is often handy to use the following fact:

Let R be a ring and m be a maximal ideal. Let M be an R-module such that for every x € M, there is

some n such that m™x = 0. Then the localization map M — M, is an isomorphism.

To see it, first note that for any v ¢ m and and n € N, there is some w ¢ m with vw —1 € m™. Indeed, since
the image of v in R/m, v + m, is a unit, there is some v + m € R/m that is its inverse, so vu + m = 1 + m.
For an arbitrary representative u, we have vu = 1 — a for some a € m. Take w = u(l +a+a?+--- +a""1).
Then

vw=vu(l+a+a*+---+a" H=0-a)l+a+a*+ - +a"')=1-a",

with a™ € m™.

Now, to show that the localization map is injective, we need to check that for any x # 0, ¢l is nonzero
as well, so vx # 0 for any v ¢ m. Take n such that m"z = 0, and w ¢ m with vw — 1 € m™. In particular,
(vw — 1)z — 0 so x = vwz. Then 0 # z = vwz so vw # 0. To show that the localization map is surjective,
we show that for any 2 € M and v ¢ m, there is some y € M with £ = ¥. With n and w as above, take

y = wx: since vwzr = x, the equality holds.
1.5. Localization. We include one more property of derivations.

Proposition 1.46. Let R be an A-algebra. Let W < R be a multiplicative set and V. = W n A. For
any W™LR module M, any A-linear derivation 0 : R — M extends uniquely to an A-linear derivation
W~IR — M given by the rule
~ /T wo(r) — ro(w)
(5) - 22
w w
and this extension is V' A-linear. Conversely, any A-linear derivation from W—1R — M is of this form.

)

That is, there are isomorphisms

DerR|A(M) - DerW71R|A(M) - DerwflR‘VqA(M).

Proof. We omit the verification that the rule for the map W—'R — M is well-defined, that this is V' A-
linear, and satisfies the product rule.

If « : W 'R — M is an A-linear derivation, by restriction through the localization map, we get a
derivation 0 : R — M with 0 oi = 0. We claim that a = 0. Indeed,

o(r)=a(r) = a(%w) = wa(%) + %a(w) = wa(%) + gﬁ(w),
O‘(i) _ar) —wia(w) _ 5(5).

Lecture of February 14, 2023
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1.6. Left-exact sequences. We now encode many of the key properties of derivations in some left-exact
sequences. Recall that a sequence of maps of R-modules is a left exact sequence is an exact sequence of
R-module maps of the form

0-L%SMEN.

That is, a and 8 are R-module homomorphisms such that with « is injective and ker(8) = im(«).
Proposition 1.47. Let R be an A-algebra and
0-LSMEN
be a left exact sequence of R-modules. Then
0— DerR|A(L) N DerR|A(M) B, DerR‘A(N)
is a left exact sequence, where . (0) = a0 d and likewise with Bi.

Proof. First we observe that «y is R-linear, since a4 (0 + @) = @40 + a0 and ay(rd) = rayo.

Since « is injective, if 0 # 0, then a0 # 0. If B4(0) = 0, then Bd(r) = 0 for all » € R, so d(r) €
ker(8) = im(«a) for all r € R, and since « is injective, there is an R-linear map o' : im(a) — L; then
0= as(a™t00) eim(ay). O

Proposition 1.48. Let A > R 2, 8 be ring homomorphisms, and M be an S-module. Then there is a left
exact sequence

0 — Dergp(M) 2% Derg)a (M) 25> Der g4 (M)
where inc is the inclusion map and ¢* is precomposition with ¢.
Proof. We start by noting that Derg r(M) naturally includes in Derg 4(M), since any R-linear map is
automatically linear over the image of A.

If 0 = inc(f), then ¢*(d) = do ¢ is an R-linear derivation on R, which must be zero. Conversely, if
@*(0) = 00 ¢ is zero, then ¢(R) is in the kernel of 9, so 0 is R-linear, and hence i the image of inc. O

Proposition 1.49. Let A — R 5 R/I be ring homomorphisms, and M be an R/I-module. Then there is
a left exact sequence
0 — Der gy (M) =5 Derpy4 (M) 2> Homp(I/12, M).

Proof. First, we have 7* is injective, since if d([r]) = 0, then 7#*(0)(r) = on(r) = d([r]) # 0.
If 0 = 7*(0), then res(d)([a]) = 0 o w([a]) = 6(0) for [a] € I/I?, so reson* = 0. Conversely, if res(d) = 0,
then d(a) = 0 for all a € I, so 0 yields a well-defined derivation from R/I — M; i.e., is in the image of #*. [

Proposition 1.50. Let A — R > R/I be ring homomorphisms, and suppose that there is an A-algebra
homomorphism 7 : R/I — R/I? such that 7w : R — R/I? is just the quotient map. Then the sequence

* res
0 — Dergyz4(M) = Dergj4(M) = Hompg(I/I?, M) — 0
s ezact.
Proof. Follows from the previous, plus proposition on surjectivity of res. ([l

2. KAHLER DIFFERENTIALS

2.1. Restriction and extension of scalars.
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2.1.1. Hom.

Definition 2.1. Let L, M, N be R-modules.
e The module of homomorphisms from M to N is
Hompg(M,N) :={¢: M — N | ¢ is R-linear}.

The R-module structure is given by the rule r - ¢ is the homomorphism m — r¢(m) = ¢(rm).
e If « : M — N is a module homomorphism, we define a map Homg (L, ) or oy from Hompg (L, M) —
Hompg(L, N) by the rule
ax(¢) = ao ¢;
ie.,
ax: (LSM) —» (LSMESN).
e If «: M — N is a module homomorphism, we define a map Hompg(«, L) or a* from Homg(N, L) —
Homp(M, L) by the rule
a*(¢) = ¢oa;

ie.,

Thus, given a fixed R-module L, F'(—) := Hompg(L, —) is a rule that assigns to any R-module M another
R-module F(M), and to any homomorphism M 2 N a homomorphism F (M) o), F(N). This plus
the fact that F' takes the identity map to the identity map and compositions to compositions makes F' a
covariant functor from R-modules to R-modules.

Similarly, given a fixed R-module L, G(—) := Hompg(—, L) is rule that assigns to any R-module M another
R-module G(M), and to any homomorphism G(M) 2, G(N) a homomorphism G(N) £@), G(M). This
plus the fact that F' takes the identity map to the identity map and compositions to compositions makes G
a contravariant functor from R-modules to R-modules. The covariant vs. contravariant bit refers to whether
the directions of maps have changed.

Homp (

Given maps L % L' and M LN M’, we likewise get a map Hompg(L', M) Homn(a:f), Hompg(L, M'), by

combining the constructions above.

Example 2.2. Homg(R, M) = M by ¢ — ¢(1), and under this isomorphism, M % N corresponds to
1+ m ~» 1~ a(m) under this isomorphism.

If T is an ideal, Homg(R/I, M) =~ anny/(I) by the same map: the image of 1 in R/I must map to
something killed by I, and there is a unique R-linear map that does this. The same recipe for maps as above
holds. Thus, we can identify Homg(R/I,—) with the functor that sends modules M to ann,(I), and sends

maps to their restrictions to these submodules.
We recall that a sequence of maps of R-modules is split-exact if it is of the form

0L S ME NSO

with « injective, 8 surjective, ker(8) = im(a) and « has a left inverse (i.e., there is a map p such that po is
the identity on L). It is equivalent if we replace the last condition with £ has a right inverse (i.e., there is a

map ¢ such that §¢ is the identity on N.
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Theorem 2.3. (1) A sequence of maps

Proof.

(3)

0o-LSMEN
is exact if and only if, for all R-modules X, the sequence
0 — Hompg (X, L) 2% Homp(X, M) 2% Homp(X, N)

18 exact.
A sequence of maps
0-LSME NS0

is split-exact if and only if, for all R-modules X, the sequence
0 — Homp(X, L) 2% Hompg(X, M) 2% Homp(X, N) — 0

15 exact.
A sequence of maps
LM NS0
1s right-ezact if and only if, for all R-modules X, the sequence
* *
0 — Homp(N, X) 25 Homp(M, X) 25> Homp (L, X)

1s left-exact.
A sequence of maps
0o-LSME NS0

is split-exact if and only if, for all R-modules X, the sequence
*
0 — Homp (N, X) 25 Homp(M, X) 25 Homp(L, X) — 0

18 exact.

(1) Let 0 > L 5 M 2, N be exact, and X be an R-module.
e «, is injective: if X 2 Lis nonzero, X L% Mis as well, since a nonzero element in the
image of ¢ goes to something nonzero in the composition.
o ker(By) = im(ay): X 2, M L5 N is zero if and only if im(¢) < ker(8) = im(«x), which happens
if and only if ¢ factors through L; i.e., ¢ € im(avy).
The other direction of the first part follows from the example above; we can use X = R.
Let0 > L% M2 N - 0be split-exact, and X be an R-module. In particular, 0 — L = M SN

is a left exact sequence, so
0 — Hompg (X, L) 2% Hompg(X, M) 2% Homp(X, N)

is exact. We just need to see that Hompg (X, M) LLR Hompg (X, N) is surjective. Let ¢ be such that
B is the identity on N. Then Syty is the identity on Hompg (X, M), so B4 must be surjective.

For the converse, take X = N. Then the identity map in Hompg(N, N) is in the image of S, so
there is a map p € Hompg(M, N) such that 8p = B4 (p) is the identity on N, as required.
Lt LS M P N S0bea right-exact sequence, and X be an R-module.

e [3* is injective: if N 2 X is nonzero, pick n € N not in the kernel, and m € M that maps to n.

Then, the image of m under M 2, N % X is nonzero.
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e ker(a*) = im(By): L > M 2, X is zero if and only if im(a) € ker(¢), which happens if and
only if ¢ descends to a map of the form N =~ M/im(«a) — X; i.e., ¢ € im(a™).
Let L & M 5 N - 0bea sequence of maps, and suppose that it is exact after applying
Homp(—, X) for all X.
e [ is surjective: if not, let X = N/im(8). There is a nonzero projection map N 2, X, but
M NS Xis zero, contradicting injectivity of 5*.
e ker(f) 2 im(a): Take X = N, and N M, X. Since ker(a*) 2 im(8*), L = M LR LN g
LﬁMiNiszero.
e ker(f) € im(a): Take X = M/im(«), and M 2, X the projection map. Since L > M 2 X
is zero, ¢ is in the image of B*, so it factors through S. This is equivalent to the stated

containment.
(4) Similar to (2). O

In short, Hompg (X, —) is kernel-preserving, and Hompg(—, X) turns cokernels into kernels.
Given a ring homomorphism ¢ : R — S, we can use ¢ to turn S-modules and S-algebras into R-modules

and R-algebras with restriction of scalars and vice versa with extension of scalars.

2.1.2. Restriction of scalars. Given ¢ : R — S and an S-module N, we get an R-module ¢, (N) by restriction
of scalars by keeping the same set and same addition, so ¢4(N) = N as additive groups, and the R-module
action r-n := ¢(r) - n, where the left-hand side is the action in ¢, (N) and the right hand side is the original
S-action. When ¢ : R — S is just an inclusion map R < S, this restriction of scalars is literally just
restricting which scalars we consider in the module action.

For example, consider R = C < S = C[z] and N = C[z]/(23). N is a cyclic S-module killed by some
stuff, but we can also “forget about the action of ” and consider N as a C-vectorspace; as such it is just a
free 3-generated R-module.

Given a homomorphism of S-modules o : N — N’, we can call ¢ () the same map from ¢, (N) — ¢=(N),
which is a homomorphism of R-modules.

We can think of this restriction of scalars ¢, as the “demotion” functor, when demotes modules from a
“bigger” (target of ¢) ring to a “smaller” (source of ¢) ring.

In the same way, we can demote S-algebras to R-algebras: if T is an S-algebra with structure map
S — T take ¢« (T) to be the same ring 7" with structure map po¢: R — T.

To promote a module or an algebra, we have to do something a bit more interesting. For example, consider
R=Cc S =C[z] and M = C?, a free R-module of rank 3. There is no “obvious” or “natural” R-module
structure on M, so we’ll end up changing our underlying set. The “right” way of going about this is by using
tensor products, but we’ll take a barehanded approach using presentations, and everyone is encouraged to

reconcile the two approaches now if they know tensors and, if not, later when they do.

2.1.3. Presentations of modules. Let M be an R-module.
Given a generating set {my}rea for M, there is a surjection from a free module onto M:
{mx}rea ~ RO 5 M —0
generating set ex —> my
and conversely any such surjection yields a generating set (consisting of the images of the basis vectors).

The kernel of this map is a submodule of R®A which are the relations on these generators. We can take

a subset {vy},er that generates the module of relations (a set of defining relations) and map a free module
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onto them:
{mA})\gA + {’U»y}—ygp > R@F — R®A — M —0
generating set defining relations el = vy ey > my

Conversely, any such right exact sequence is a recipe for a set of generators and defining relations on M.
The map between free modules is given by multiplication by a (possibly infinite) matrix A whose v column
consists of the A-coordinates of v,; concretely, each column is a relation on the my’s. When A and I' are
finite, we’ll just write something like

A RS M0

R™
and A will be an actual n x m matrix, standing for the map of multiplication (on the left) by A. We will
call this (either in the finite or infinite case) a presentation matriz for M.

Given a presentation matrix, we can recover M up to isomorphism as M =~ R™/im(A) (i.e., the cokernel
of the map A) coming from the first isomorphism theorem, since the map from R™ — M is surjective with
kernel im(A). The rows of the presentation matrix correspond to generators, and the columns correspond

to relations.

2.1.4. Extension of scalars for modules. We're now ready to describe extension of scalars, or promotion of
a module along a ring homomorphism. Let ¢ : R — S be a ring homomorphism and M be an R-module.
We define the extension of scalars of M, denoted ¢*(M) or S ®r M as follows. Take a presentation of M:

R™ A R" M 0
then ¢*(M) is the S-module with the same presentation
gm 2, gn L, g* (M) — 0.

Lecture of February 16, 2023

It’s not clear that what we did does not depend on the choice of presentation. However, we will show that
the ¢* (M) satisfies an important universal property and use that to show it is well-defined.

First we note that there is an R-module homomorphism from ny; : M — ¢*(M) (or more properly, to
¢x¢*(M)). Given r € R write m = )., r;[e;], where the e;’s are the standard basis in R". For convenience,
set e to be the row vector with entries ey, ...,e, and r be the column vector of r1,...,r, so m = er. We
map m to ep(r) = >, ¢(r;)[e;]. If m also equals ), ri[e;] = er’, then e(r —r’) = 0 so r —r’ = Av for some
v, and hence

e6(r) — ed(t') = eo(r — ') = ed(Av) = ed(A)v,

so this is zero in ¢*(M). It is then clear to see that this is R-linear.

Proposition 2.4. Let ¢ : R — S be a ring homomorphism. Let M be an R-module, N be an S-module,
and o« : M — ¢ (N) be an R-module homomorphism. Then there exists a unique S-module homomorphism
B: ¢« (M) — N that makes the diagram commute:

M -2 ¢ (M) .

I
« | 8
\

N

Proof. We will abuse notation and drop the ¢ to identify elements in R with their images in S.
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Let a([e;]) = n; and write n for the row vector [ni,...,n:. We define 53, si[ef]) = >, sins, or
B(es) = ns for short. To see that this is well-defined, suppose that ). s;[ej] = >, s;[e;], and write s and s’
for the column vectors of s; and s;. We need to show that ns = ns’. By construction of ¢* (M), we have that
s —s’ = Av for some vector v with entries in S. Since « is well-defined, we must have that for any columns
of A, the corresponding combination of basis vectors maps to zero, so the corresponding combination of
the n’s is zero; i.e., nA = 0. But then nAv = n(s — '), and this shows the claim. Checking S-linearity
is straightforward from the construction. For uniqueness, ¢*(M) is generated by [e;], and n; = a([e;]) =

Bnar([ei]) = B([€e]), so the generators must go to the same place, and hence there can only be one map. [

In other words, the proposition says that for any R-module M and S-module NV, there is an isomorphism

%
Homg (¢* M, N) 24 Homp (M, ¢4 N).

Corollary 2.5. ¢ : R — S be a ring homomorphism, and M be an R-module. Fiz two presentations for
M, and let (¢pF(M),nM) and (¢35 (M),n!) be the two modules and morphisms constructed above for each
presentation. Then ¢F (M) = ¢%(M) as S-modules. Moreover, there is a unique S-module isomorphism 0
for which n}1 = 0 on.

Proof. Tt suffices to show that there is an isomorphism that makes 7! = 6 o nl| for the uniqueness will

follow from the proposition applied with « = 15. Consider the diagram

o1 (M)

e
Y

I

I

712

M — ¢%(M)
dF (M)

The universal property yields unique S-module dotted maps making the triangles commute. The double
down composition and the identity map on ¢¥(M) are two maps that make the big triangle commute.
Applying the uniqueness in the proposition with a = 71, we get that the composition is the identity. We
can switch the roles of ¢F and ¢3 to get that the other composition is the identity. Thus, the induced map

is an isomorphism. O

Corollary 2.6. Let ¢ : R — S be a ring homomorphism. For any R-module homomorphism o : M — N,

there is a unique S-module homomomorphism ¢*a : ¢* M — ¢*N such that p*aony = ny o a.

Proof. Apply the universal property of (¢*M,nyr) to ny o a. O

Tracing the proof of the universal property, we see that ¢*« can be computed as follows: take presentations

for M and N, and lift o to a matrix from the free modules over M and N; then use the same matrix for

P*a.

*
Lemma 2.7. Under the isomorphisms Homg(¢p* M, N) RAYN Homp (M, ¢+ N), the map Homg(¢p*a, N) cor-

responds to Hompg(«, N). That is, for an R-module homomorphism o« : L — M and S-module N, there is a
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commutative diagram:

Homg (¢p*a,N)
Homg(¢* M, N) ——— Homg(¢*L, N)

:im’{} :J{nf

Homp(a,N)
Homp (M, N) Hompg (L, N)

Proof. First, by construction of ¢*«, we have a commutative diagram:

¢*a

P*M <~ p* [
TUM T”IL
M<" 7
Then using this commutativity, given an S-linear map 0 : p* M — N, we have that
(n¥ o Hom(¢*a, N))(0) = 0o ¢p*aonr, = 0 oaony = (Hom(a, N) onk,)(6). O
Proposition 2.8. Let ¢ : R — S be a ring homomorphism, and
LSMEL NS0
be a right exact sequence of R-modules. Then the sequence of S-modules
o L 22 grar 258, gr N o
s ezact.

Proof. Let X be an arbitrary S-module. Applying Hom into X to the sequence above, we have a sequence:

Hom(

* om
Mﬂoms(q’)*M’X) Hom(

* ¢7*0’7X) *
0 — Homg(¢* N, X) ————= 5 Homg(¢*L, X).

We have isomorphisms
Hom(¢*3,X) Hom(¢*a, X)

0 — > Homg(¢* N, X) — > Homg(¢* M, X) ——— > Homg(¢* L, X)

Hom(B,X) Hom(a,X)
0—— Homp(N, X) — "~ Homp(M, X) — "~ Homp(L, X)

The last row is exact, by left exactness of Hom (part (3) in the forward implication). But then by left
exactness of Hom again, since this is true for all X, the sequence we consider is exact. O

In general, exact sequences (or left exact sequences) no longer remain exact. We say that a ring homo-

morphism ¢ : R — S is flat if it has the special property that extension of scalars preserves exact sequences.

Proposition 2.9. Let R be a ring and W be a multiplicative set. Let ¢ : R — W™IR be the localization
map. Then ¢*(M) =~ W=tM for any R-module M.

Proof. Let n: M — W~'M be the localization map. We will show that (W~1M,n) satisfies the universal
property of ¢*M. If N is any W' R-module, and o : M — N is a homomorphism, define 8: WM — N
by sending £(%) = @ The check that this 3 is well-defined and W ! R-linear is straightforward; that it
is the unique map making the diagram commute follows from the fact that the image of M generates W 1M
as a W~!R-module. O
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2.1.5. Presentations of algebras. We can play a similar game with algebras. Let S be an R-algebra, so there

is some ¢ : R — S. Given a generating set for S as an algebra, we get a surjection from a polynomial ring:

{S)\})\EA ~ R[{m,\},\eA] —-S5—0

algebra generating set Ty — S)

The kernel is an ideal I, for which we can pick generators ({f,}er) and we get

{sx}ren + {fy}rer ~ Rl{zahaea]® — R[{X)\}rea] — S >0
algebra generating set defining relations efy — fy ex — Sx

Note that we have polynomial relations rather than linear relations now, so we can’t use a matrix to describe
them anymore.
Given an R-algebra S with an algebra presentation S =~ R[z1,...,2,]/(f1,. .., fm), we can also ask what S

looks like as an R-module. As a generating set, we can take the monomials {z]* - - - 2% | a; € N}. The relations

are generated as an R[z1,...,x,]-module by fi,..., fi; to find an R-module generating set of the relations,
we can take {z{*--- 2% f; | a; € N, j = 1,...,m} and collect the coefficients of the monomials, and this gives
a presentation. That is, if f; = Y ¢, ;2% for some tuples a, then {} ¢, ;2™ [be N",j =1,...,m}isa

defining set of relations.

For example, consider R = Z[z]/(22%—5). Let’s find a Z-module presentation of this ring. As a generating

set, we have 1, z, 22, 23, ... ; the relations are given by 222 —5, 223 — 5z, 22* —522, . .. ; the presentation matrix
is _ -
-5 0
-5 0

2.1.6. Base change for algebras. Let’s promote some algebras too. We’ll follow the same recipe: take a
presentation (as an algebra) and upgrade the base ring. That is, let ¢ : R — S be a ring homomorphism

and T be an R-algebra. We define the extension of scalars or base change of T as follows. Write

[f1seesfm
—_

R[Xi,..., X,]™ L R[X., ..., X,] > T -0

then ¢*(T') is the S-algebra with presentation

:Im [¢(fl))"':¢(f7n)] S[

S[X1,..., X, X1,...,Xn] = ¢*(T) > 0.

Note that we are using the same notation as module extension of scalars, though it is not immediately

clear these should be related. For starters, in analogy with the module extension of scalars, one has:

Proposition 2.10. For a ring homomorphism ¢ : R — S and an R-algebra T, the base change ¢*T admits
an R-algebra homomorphism nr : T — ¢*T that satisfies the universal property that for any S-algebra V
and R-algebra homomorphism « : R — V, there is a unique S-algebra homomorphism 8 : ¢*T — V that
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makes the diagram commute:
G
\
x I B
A
v

Consequently, ¢*T is well-defined (independent of the choice of presentation) up to isomorphism.
Proof. Omitted; similar to what we did with modules. O
Another key point is that this base change operation for algebras agrees with that for modules. Namely:

Proposition 2.11. Let ¢ : R — S be a ring homomorphism and T an R-algebra. Then the S-algebra
@*T obtained by extension of scalars of R-algebras along ¢, considered as an S-module, is isomorphic to the

extension of scalars of T considered as an S-module.

Proof. Take a presentation of T as an R-algebra, and take the presentation as an R-module obtained from
it as discussed above, i.e., with relations {>,, cq;2%*® | b € N*,j = 1,...,m} for an algebra generating
set f; = >, cajx® If we take algebra extension of scalars of T, then we get the same presentation as an
S-module by this formula. O

Lecture of February 23, 2023
2.2. Kahler differentials.

Definition 2.12. Let R be an A-algebra. A derivation dgj4 : R — §2g4 to some R-module Qp 4 is called
a universal derivation of R over A if for any A-linear derivation 0 : R — M to any R-module M, there is a
unique R-module homomorphism a : Qg4 — M such that 0 = a o dp|a:

dRr|a
R—— QR\A .

|

e

Y
M

We call the target module Qg4 a module of differentials or module of Kahler differentials of R over A.

Theorem 2.13. Let R be an A-algebra. There exists a universal derivation of R over A. Given two
universal derivations drja : R — Qpja and le\A R — Q’R‘A of R over A, there is a unique isomorphism
a:Qpa = Q;%IA such that ad = d'. In particular, there exists a module of differentials that is unique up to

isomorphism.

Proof. Existence of universal derivation: Let F' be a free module with basis {dr | r € R}, and d: R — F
be function d(r) = dr. (Note that this function is not a homomorphism in any sense, just a function.) Let
J be the submodule of F' generated by the elements of the form

o d(r+s)—dr—ds, r,s€R,

o d(rs) =rds—sdr,r,s€ R,

e d(ar) =adr,ac A, r € R,
and set ) = F/J, and by abuse of notation d the map R — . First, we observe that d is an A-linear
derivation: the relations in J force each rule to hold. Now, suppose that 0 : R — M is a derivation. We need

to see that there is exactly one R-module homomorphism a : Q — M such that « od = ¢. There is at most



MATH 918 LECTURE NOTES, SPRING 2023 25

one, since ) is generated by the elements dr and a(dr) = a(d(r)) = d(r), so the images of the generators are
determined. To see that the map o : F' — M given on the generators dr as a(dr) = d(r) gives a well-defined
R-module homomorphism « : @ — M, we just need to check that a(J) = 0, or equivalently that o maps
each of the generators of J to zero. But a(d(r + s) — dr —ds) = d(r + s) — d(r) — d(s) = 0, and similarly
for the other rules since ¢ is an A-linear derivation. Thus, such a map « exists (and, still, is unique). This
shows that d : R — ) is a universal derivation.

Uniqueness of universal derivation: This is the analogous to the proof for extension of scalars:

Uniqueness of the isomorphism (if it exists) is immediate from the universal property. Consider the diagram

QpRia

dV !
\
dpa ¥

/
i QR\A

|
|
dr|a y

Qpgja

The identity map on {lg 4 makes the big triangle commute, and by uniqueness, the vertical maps must

compose to the identity. Switch roles to get that the two maps compose to the identity the other way. [
From the definition of module of differentials, we have:

Lemma 2.14. For any R-algebra A and R-module M, there is an isomorphism

A 4
Hompg(Qpgja, M) — Dergja(M),

where dTﬂA is precomposition by dg|a-

Thus, the single module 2|4 contains all of the information about all of the A-linear derivations from R
to any R-module! Of course, translating back and forth may be challenging in general.

It turns out that we have computed the module of differentials is a relatively broad setting already.

Theorem 2.15. Let A be a ring, and R = A[zxx | A € A] be a polynomial ring over A. The module of
differentials Qg s of R over A is a free R-module with basis {dxx | A € A}, and the universal derivation is

given by
d
dra(f) = )] dezx-

Proof. We know that this is a valid derivation based on our earlier computation of derivations on polynomial
rings. Let us see that it is universal. Given any R-module M, we have that every derivation ¢ : R — M can
be written uniquely in the form >, _, %mx If 0 = aod, then my = d(xx) = a(dzy), and this uniquely
determines «, so there is at most one homomorphism that makes the diagram commute in the universal
property. On the other hand, if we take the R-linear map given by this equation, then « o d is a derivation
that agree with ¢ on the z)’s, and since a derivation is uniquely determined by its values on a generating

set, the map we have 0 = a o d. Thus, the universal property holds. O

To compute modules of differentials in general, we will bootstrap off of this case. To get started, we will

need to set up some functoriality properties.
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Proposition 2.16. (1) Let A Y Bbea ring homomorphism and R be a B-algebra. There there is a

unique R-module homomorphism dg, such that the diagram commutes:

dr|y
Qpa ——— QpiB

dR\ AB
R

(2) Let A be a ring, and ¢ : R — S be an A-algebra homomorphism. Then there is a unique R-module

homomorphism dgj4 : 2gja — 2514 such that the diagram commutes

dg|a
Qprja — Qs)a

dR\AT Tdsm

R S

(3) Let A be a ring, and ¢ : R — S be an A-algebra homomorphism. Then there is a unique S-module
homomorphism S ® dgj 4 : S ®r Qga — Q514 such that the diagram commutes

S®dg a
S®r Qpa — Qgja

|

Qpja ds|a

dR\AT
®

R—— S

Proof. (1) The map dgp, since it is B-linear, is an A-linear derivation when viewed via restriction of
scalars along 1. Apply the universal property of {2p 4 and dg 4 to this derivation.
(2) The map dgj4 o ¢ is an A-linear derivation from R to Qg4. Apply the universal property of Qg4
and dg|4 to this derivation.
(3) Apply the universal property of extension of scalars to the map dgja- O

Theorem 2.17 (First fundamental sequence). Let A Y RE S be ring homomorphisms. Then there is a
right exact sequence of S-modules

S®dg|r ds|y

S ®r Qpja Qs)4 Qs1r — 0.

Proof. By the Theorem on exactness of Hom, it suffices to show that for every S-module M there is a left

exact sequence

dzw (S®dyr)*
0 ———— Homg(Q2gr, M) ———— Homg(Qg)4, M) ———— Homs(S ®r Qrja, M) .

This is just the left exact sequence on derivations from before! Precisely, we have a commutative diagram

L (S®dyir)*
0 ——— Homg(Qg|r, M) ——— Homg (g4, M) ———— Homg(S ®r Qrja, M)

~ * ~ * ~ * *
=J/dSR =\LdSA =\LdR|AOn

inc ¢*
0 ————— Derg|g(M) ———— Derg|a(M) Der (4 (M)
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Let’s check them: for Qg LN M, we have
d§|Ad§|¢9 =0odgyodsia = 0dgr = dk”;‘RG = incd§|R6
and for Qg4 LN M, we have
d}“%len*o(S ® dyip)*0 =00 (S ® dyr) onodg|a =HodS‘Ao¢=¢)*d;‘A9. O

Lecture of February 28, 2023

Theorem 2.18 (Second fundamental sequence). Let A — R > R/I be ring homomorphisms. Then there

is a right exact sequence of R/I-modules

R/I®dr|a

dria
? % R/I®p Qpia — Qryrja — 0,

I/I
where dg4 is the map given by applying dgja to a representative and taking the image in R/I®gr Qp)a; i.c.,
the map fitting into the diagram

dr|a

R Qpia

I

R/I?> — - = R/I ®r Qpja

|

I/12

If we also have that the quotient map R/I?> — R/I admits an A-algebra right inverse, then

dr|a R/I®dr| A

0—I/I? —5 R/I QR Qpja Qr/rja —0

is split exact.

Proof. By the Theorem on exactness of Hom it suffices to show that for every R/I-module M there is a left
exact sequence
(R/I®dx|a)* dna* )
00— HOmR(QR/[‘A, M) —— I{OIHR(QR‘A7 M) —— HOIHR(I/I ,M) .
and that the last map is surjective under the hypothesis that the quotient map R/I? — R/I admits an
A-algebra right inverse. This is just the other left exact sequence on derivations from before!
Precisely, we have a commutative diagram

(R/1@dxia)* dra™
0—— HomR/I(QR/I\AaM) - HomR/I(QR\AaM) - HOUlR/I I/I M)

~ * ~ * *
=J/dR/1A =idRAO17
*

0 —————— Derg/rja(M) ﬂ—>DerR|A(M)$-HomR I/, M)
The first square is just a special case of the second square in the previous proof and the second is easily
checked too. The last map on the bottom is also surjective under the bonus hypothesis, so the top row

extends to a short exact sequence in this case. O
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We can now write everything about differentials in concrete terms. We recall that the Jacobian of a set

of elements f1,..., f;, in a polynomial ring A[z1,...,z,] is the matrix
dah 0 dh
dxq dx,,
J(flv"'vfm): :
dfm .. dfm
dxq dx,

Let’s also call this the row Jacobian to indicate that the elements f; correspond to rows. The column

Jacobian is its transpose:

dah . dfm
dzl dIl

T _
J(froifm)” = | .
df1 e dfm
dxy, dxy,

Corollary 2.19. Let A LRSS be maps of rings. Concretely, let

e R be the A-algebra with generators x; and relations f;,
e S be the A-algebra with generators y; and relations g;,
o dxi) = hi(y).
Then,
(1) Qpgja is the R-module with generators dx; and relations df; = ), Yi dg;. In particular (if the

7 dmi
set of generators and relations are finite), the presentation matriz of g4 is the column Jacobian
J(fh RN fm)T-

(2) The universal derivation dgja mapsr € R to ), ;—;dxi.

(3) The map dgjo maps the dry € Qpa to the element Cfi’—;’;dyi € Qga. In particular (if the set of
generators and relations on both sides are finite), the matriz of the map in the given generating sets
is the column Jacobian J(hy, ..., he)T.

(4) The map dg)y is a quotient map from Qg4 — Qg r given by killing the elements of the form
> %’i‘dyi for all k. That is, with respect to the given generators (if all are finite), the map is
quotienting by the image of the column Jacobian J(hy, ..., he)T.

Proof. For (1), we can write R = T'/I with T' = A[{x;}] and I = ({f;}). Then Q)4 is the free T-module
with basis {dz;}, and R ®r 7|4 is the free R-module on the same basis. The image of the R-linear map

dria

I/I? — R®r Q)4 is generated by the elements m(fj)7 which are just the df; elements above. The
second fundamental sequence then gives the result. For (2), if 7 : T — R is the quotient map, in the
isomorphism above, we have identified Q|4 with a quotient of R®r (7|4, 50 R®r dy 4 is a quotient map.
Then dpjaom = R®r drja 0nodpa, so for r' € T with 7(r') = r, we have dga(r) = drja(r’) = >, 4 da;.

% dzi
For (3), we have
dhy,

dgia(dry) = dyjadgia(rr) = dgjad(zr) = dsja(he) = s
P i

For (4), from the first fundamental sequence, we have that Qgp is the quotient of Qg4 by the image of
S ®pr dg|a- This is generated by the images of dz; under this map, which are as above. O

Example 2.20. Let K be a field.

1) For a polynomial ring R = K|x,y, z|, we have Qg = Rdx @ Rdy @ Rdz. This is free of rank 3.
|
2) For R = K[z]/(2?), if the characteristic of K is not 2, then Qg x = Rdz/(2zdr) =~ R/(zx). If the
\
characteristic is 2, then Qg = Rdx.
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Rdx @ Rdy @ Rdz

(nzn—ldz + ny"tdy + nz"—1dz)’
In particular, if K has characteristic zero we get a free module of rank three quotiented out by

(3) For R = K[x,y,z]/(2" +y™ + 2") with n > 1 we have Qg =

a relation with entries in the maximal ideal m = (x,y,z). If we invert the nonzero elements in R
in our relation we can divide by the coefficient of dx and write it as a combination of the others,
so (Qgr|k) () is a free module over the quotient field of rank two. That is Qg x has rank two as
an R-module. However, Qg x is not free; in particular (Qgx)m is not, since (g x)m/M(Qr K )m
is a three dimensional K-vector space on the basis dx,dy,dz. This all works as long as n is not a
multiple of the characteristic of K.

If K has characteristic p and n = p, then the relation is trivial, so Qg is free of rank three.

(4) For R = K[z,y,2]/(2™ + y" + 2" — 1), we have Qp g = (nn—Td + ny—idy 1 nen1dz)’

claim that, if the characteristic of K is zero, Qg is a locally free/projective module of rank two.

We

Since (z,y, z) generate the unit ideal of R, there is no maximal ideal containing all of them, so any
maximal ideal fails to contain at least one. Let m be a maximal ideal; WLOG say x ¢ m. Then by
an argument similar to above, we get that (Qg|x )m is free of rank two. Depending on K and n, this
module is not necessarily (globally) free. For example, if K = R and n = 2, this is impossible. Prove
it!

Lecture of March 2, 2023
Recall that a module P is projective if the equivalent conditions hold:

e For any surjection of R-modules M %> N — 0 and homomorphism P 5N , there is a map P = M
such that 8 = pa;

e Every short exact sequence of the form 0 - A — B — P — 0 is split exact;

e There is a module @ such that P ® @ is free.

If P is finitely generated and R is Noetherian, these are equivalent to

e Pislocally free: for every maximal ideal m (equivalently, every prime ideal p), Py, is a free Ry,-module

(resp., P, is a free Ry-module).

We can also show that modules of differentials localize.

Proposition 2.21. Let R be an A-algebra and W < R a multiplicative set. Then there are isomorphisms

W_19R|A = Qw—lRlA.

Proof. First, note that there is a natural R-linear map 7 : Qg4 — W*1§2R|A

CZR\A

W IR ——= W_IQR‘A

|

R R|A

dr|a

which induces a unique A-linear derivation from W~'R to W~—1Q Rr|A making the diagram commute. We
claim this is a universal derivation. Let M be an W' R-module and 0 : W™'R — M an A-linear derivation.
Then, restricting to R we get a derivation d|g, so the universal property of 2|4 yields an R-linear map «

with adp 4 = 0. But then the universal property of extension of scalars yields a unique W~ R-linear map
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ﬁ . W_IQR|A — M with 677 = Q.

—1 dria
W™ R —— W™ Qgja

R|A

R

Qpg|a

Then Bdi = pnd = ad = d|g and since two derivations on W~!R with the same restriction to R must be
the same by the lemma on derivations and localization we must have Bd = 0. Moreover, since the image of
d generates {1 4, the image of d generates W~1Q) R|4, and since 3 is unique determined by its values on a

generating set, the map § must be unique. This verifies the universal property. O

Definition 2.22. We say that a ring homomorphism R 2, 8 is

o essentially algebra-finite if ¢ factors as an algebra-finite map followed by a localization. Concretely,
S =W=YR[z1,...,2,]/I) for some ideal I and multiplicatively closed set W.

e finitely presented if it is algebra-finite and the kernel is a finitely generated ideal. Concretely, S =
Rlx1,...,20]/(f1,---, fm). Note that if R is Noetherian, then algebra-finite and finitely presented
are equivalent by Hilbert Basis Theorem.

o essentially finitely presented if ¢ factors as an finitely presented map followed by a localization.
Concretely, S = WY (R[x1,...,2,]/(f1,- -, fm)) multiplicatively closed set W.

Corollary 2.23. Let S = W R[z1,...,z,]/I and I = (f1,..., fm). Then Qgs|r is the S module with
generators dxy, ..., dx, and relations df; = Y, %dmi. In particular, Qg is finitely generated.
2.3. Jacobi-Zariski sequence.
Definition 2.24. Let R be an A-algebra. Write R = /I with S = A[X]. We define I'g4 to be the kernel
—
of the map I/1? =5 R®g Q) 4.
Here the map dg|; is the map from the second fundamental sequence: it is the map given by applying

ds|r to a representative and going modulo I; i.e., the map fitting into the diagram

ds|a
S —— Qg4

_

S/I2 - —->S/I®s QS\A

|

I/1?

We will call the map /12 dsir, R®s€25|4 the conormal map associated with the presentation R = A[X]/I.

Thus, there is an exact sequence

ds|r

0— g — I/I? —> P Rdz — Qg4 — 0.

We need to see that I'g 4 is well-defined.
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Proposition 2.25. Different presentations of R as an A-algebra yield isomorphic R-modules T'g) 4.
(To prove next time).

Theorem 2.26 (Jacobi-Zariski sequence). Let A — R — S be ring homomorphisms. Then there is an exact
sequence

Lsja = Tgir = S®r Qrja — Qsja — Qg — 0.
(To prove next time).

Remark 2.27. Both of the fundamental sequences are special cases of this! The tail is just the first funda-
mental sequence. If we have R — S = R/I, then we don’t need any variables at all to present R/I; i.e., we
can take R[X] in the presentation R[X] — R/I to be just R itself. Thus, the sequence defining I'g/7|r reads

0= Trir — I/I* =0 — Qpjpr — 0,

so Pp/qp = I/I? and Qg/rig = 0. Thus, we obtain the second fundamental sequence as the tail of the
Jacobi-Zariski sequence in this case.

Lecture of March 7, 2023

Lemma 2.28 (Snake Lemma). Given a commutative diagram with exact rows

c

A B C 0
ol
0—> A B c’

there is an exact sequence
ker(a) — ker(b) — ker(c) — coker(a) — coker(b) — coker(c).

If in addition the top row has 0 — on the left or the bottom row has — 0 on the right, then one can add 0 —

or — 0 respectively to the exact sequence.
Proposition 2.29. Different presentations of R as an A-algebra yield isomorphic R-modules T'g 4.

Proof. Unfortunately, we do not have a snappy universal property to help us here, so we proceed directly.
Suppose we are given polynomial rings A[X] and A[Y] with surjections 7 : A[X] — R and 7’ : A[Y] — R.
Then there is a surjection 7" : A[X,Y] — R given by sending 7" (z;) = 7(z;) and 7" (y;) = 7' (y;)-

A[X,Y]<—— 4

[Y]
UT X lﬂ/
A[X] R

If we show that 7 and 7" yield isomorphic I' modules, then by symmetry, 7 and 7’ do as well.
For each y; € Y, we can choose some g; € A[X] with 7(g;) = 7’(y;). Let I = ker(n); we’ll sometimes write

I(x) for I to indicate this consists of polynomials in the X variables. Note that
J = ker(n") = (I(x),{yi — 9:}) A[X,Y].

We can take a change of variables in A[X,Y] replacing y; by y; — ¢;; then without loss of generality, we can
assume that J = (I(z),Y)A[X,Y].
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The inclusion maps I < J and I? < J? induce a map I/I* — J/J?. Since
T2 T = (1@ 1@)Y, (V))ALX, Y] A 1€ (1), 1@)Y, (V))A[X, Y] A A[X] = [(2)2,

this map is injective. The cokernel is
(I(z),Y)A[X,Y] N (I(z),Y)s” - [I(2),Y)A[X,Y]
(I(x), Y2A[X, Y] + () — (I(2)2, I(2)Y, (Y))A[X, Y]+ I(x) — (I(2), (V))A[X, Y]
since I(2)A[X,Y] = I(z) + I(x)Y A[X,Y]. We claim that this is a free R-module with basis {[y;]}. Indeed,
it is generated by these as an S”-module, and given an R-linear relation on these classes, this pulls back to
an A[X, Y |-linear relation >, p;(z, y)y; € (I(z), (Y)?)A[X,Y]: the terms in p; without any y’s must also be
in I, so each p;(z,y) € (I(z),Y)A[X,Y], and hence is the trivial relation over R.
We then have a

/12

J/J? —L > @ Rdx; ® @ Rdy;

@ Ry;

0 0
with exact rows, where the bottom map sends y; to dy;. We claim that this commutes. For the top square,

for a € I(z), under the — then | composition, we have [a] — Y}, 4%dz; — Y. 4% dz; and under the | then
da

— composition, we have [a] — [a] — }; 7 dx;. For the bottom square, it suffices to check for a elements
in a generating set, so for y; and for a € I(z). For a € I(x), under the — then | composition, we have
la] — >, j—;ida:i — 0, and under the | then — composition, we have [a] — 0 — 0. For y;, under the — then
| composition, we have [y;] — dy; — dy;, and under the | then — composition, we have [y;] — [y;] — dy;.

The map on cokernels is an isomorphism. The Snake Lemma, then says that
0 — ker (I/1? & @ Rdz;) — ker (J/J? S @ Rda; ® P Rdy;) — 0 — ---

is exact, so these modules are isomorphic. O

Proposition 2.30. Let A % Rbea homomorphism and W < R be a multiplicative set. Then W*1FR‘A =

FW*1R|A-

Proof. Let R = A[X]/I. We have that W—R =~ R[Y]/({wy., — 1}) for a set of variables in bijection with
W one can see this by verifying the latter quotient satisfies the universal property of localization. We then
obtain the presentation W—'R = A[X,Y]/J with J = TA[X,Y] + ({wy, — 1}).

The inclusions I < J and I? < J? induce a map I/I?> — J/J?, and thus by the universal property of
localization, W=Y(I/I%) — J/J?. As J/J? is a W~ R-module, we can rewrite
(I {wyw —1HW 'R (I {yw —w W 'R
(I {wyw — B2WTR ~ (I {yw —w })2W IR’

J)J? =
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We can then take a change of coordinates and replace y, —w ™! by y.,, and the rest of the argument proceeds

as in the previous one. O

We recall that a ring homomorphism R 2 S s flat if the corresponding extension of scalars functor

S ®gr — turns injective maps into injective maps. This is true for polynomial maps and localizations.

Theorem 2.31. Let A — R — S be ring homomorphisms. Then there is an exact sequence
Fga = Tsip = S®r Qrja — Qsja — Qgr — 0.

If R — S is flat, then one can extend the sequence one further to the left by S ®r T'rja-

Proof. Take R = A[X]/I and S = R[Y]/J. Let’s write A[X] > R and R[Y] ™, S for these surjections,
and just to keep track of things, write I(x) = I and J(y) = J to remember that they are polynomials
in 2 and y respectively. Then the quotient map A[X] - R induces by extension of scalars A[Y] ®4 — a
] AV I@ar, R[Y'], which has kernel I(x)A[X,Y], generated by the images of I(x). We
then get an algebra presentation of S over A by composing 7”7 : A[X,Y] Al®ar, R[Y] 8. If we set
J'(y) = (A[Y]®a 7)"(J(y)) to be the preimage of J(y) in A[X,Y] (which is generated by polynomials in
just the y’s also), then the kernel 7”7 is L = I(z)A[X,Y] + J'(y).

We claim that there is a right exact sequence

quotient map A[X,Y

S®pI/I* - L/L* — J/J* - 0.

First, we have (A[Y] ®a 7)(L) = J and likewise with L? and J? so we get a valid surjection on the right.
Since I € L, we also have I? < L?, and there is a valid map R-module map I/I? — L/L?. Then the universal
property of extension of scalars gives the first map above.

As S®pg I/I? is generated by images of elements in I, to see that the composition above is zero, it suffices
to check for elements of I, but 7(I) = 0. On the other hand, the kernel of the map corresponds to classes of
elements in L with (A[Y]®a7)(f) € J(y)?, which corresponds to classes of elements in J'(y)? +I(z)A[X, Y].
But this is contained in L? + I(z)A[X, Y], so the kernel of the map L/L? — J/J? is generated by classes of
elements in the image of I. This shows the sequence is right exact.

We then get a commutative diagram

S®p /12 L/L? J)J? ——= 0

| | |

0 —— P Sde; —— P Sdz; ®P Sdy; —— P Sdy; ——= 0

with exact rows. We note that the first column comes from the map giving {2g|4 as cokernel and I'g|4 and
kernel affter extension of scalars to S. In the case R — S is flat, we have that the kernel of S ®g I/I? —

@ Sdx; is S ®r T'r|a, and we get one more from the snake lemma. O

2.4. Unramified, smooth, and étale maps.

Definition 2.32. Let R > S be a ring homomorphism. We say that ¢ is
e formally unramified if Qg g = 0,
e formally étale if Qg g =0 and I'gjgr = 0,
e formally smooth if I'g g = 0 and {2g|r is projective.
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If S is a finitely presented R-algebra, we drop the “formally” and say unramified/étale/smooth if the cor-
responding condition holds. If S is essentially finitely-presented over R, and the corresponding condition

holds, we say essentially unramified /essentially étale/essentially smooth.

Lecture of March 9, 2023
Note that formally étale is formally unramified plus formally smooth.
To get a sense of where these conditions come from, let’s throw them into the Jacobi-Zariski sequence:
given a map of A-algebra R 28 , we can ask whether for every S-module M the map
*

Derg|4(M) <= Derpy4(M)

is injective, surjective, or bijective.
S5@dy|a

If R — S is formally unramified, Qg r = 0, s0 S ®r gja (25|14 is surjective, and by exactness of

Hom, Homg (254, M) = Derg 4 (M) LN Derpja(M) = Homg(S ®r Qgja, M) is injective for all M.

If R — S is formally étale, Qg5 = 0 and Tgjp = 0, 50 S ®p Qs —nts Qg4 is an isomorphism, and
Homg (g4, M) = Derg (M) 2, Derpja(M) = Homg(S ®r Qgja, M) is an isomorphism for all M.

If R — S is formally smooth, (g is projective and I'gjgp = 0, so S ®r Qgja S®dsia, 514 is a split
injection, and Homg(2gj4, M) = Derg 4 (M) LN Derpja(M) = Homg(S ®r Qgja, M) is a surjection for
all M.

In particular, if ¢ : X — Y is a map of complex affine varieties, and ¢* : C[Y] — C[X] is the map on
coordinate rings, then

e If 4* is unramified, then the induced map on tangent spaces is injective at every point;
e If )* is étale, then the induced map on tangent spaces is bijective at every point;
e If 4* is smooth, then the induced map on tangent spaces is surjective at every point.

‘We note:

Proposition 2.33. Let R 2 Sbea ring homomorphism. Write S = R[X]/I for some polynomial ring
R[X] and ideal I.

(1) ¢ is formally unramified if and only if the conormal map I/I? 4, @ Sdxy is surjective.
(2) ¢ is formally étale if and only if the conormal map I/I? LN @ Sdxy is bijective.
(3) ¢ is formally smooth if and only if the conormal map I/I? 4, @ Sdzy is a split injection.

Example 2.34. (1) If R — R/I is surjective, then is formally unramified, and if R is Noetherian, plain
old unramified. In this case, I'r/rjp = I/I 2. A surjection is almost never formally smooth /formally
étale: this would require I = I?, which (at least if I is finitely generated) I to be generated by an
idempotent. That is, a smooth surjection must be killing a factor in a direct product.

(2) If R is a ring and W is a multiplicative set, then W1 R is formally étale over R. Indeed, we have
Cyw-1gr = W 'Tgig = 0 and likewise with Q.

(3) Let K be a field and R = K[xz,y, z]. Then Qpk is free of rank 3 and I' g x = 0, so R is smooth over
K. R is not unramified or étale.

(4) Let K = R and R = K[z,y,z]/(2® + y* + 2%). Then Qpx localized at (z,y, z) is not free, so Qp|x
is not projective, and hence R is not smooth over K. Note that, trivially, every K-linear derivation
on K extends to R. R is not unramified or étale.

We remark that if T is a ring and f is a nonzerodivisor, then (f)/(f?) is a free T/( f)-module with
basis element [f]: if tf = sf? then t = sf € (f), so the annihilator as a T-module is just f.
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(5) Let K = R be a field of characteristic zero and R = K|[x,y, 2]/(z? + y*> + 22 — 1). We have seen that

Qg is locally free, and hence projective. By definition,
T = ker ((£)/(f*) > Rdw @ Rdy @ Rdz)

where f = 22 + y?2 + 22 — 1. Given s € S and [sf] € (f)/(f?), we have d([sf]) = 0 implies
s(2zdx + 2ydy + 2zdz) = 0 in Rdx @ Rdy ® Rdz, which implies sz € (f)S, so f|s. Thus, the map d
is injective, and I' g = 0. We conclude that R is smooth over K. R is not unramified or étale.

(6) Let K = F, and R = K[z]/(2?). Then Qg = Rdax is free of rank 1, but the map I/I? 4, Rdx
maps the generator z¥ to zero, so I'gc = (2)/(2?)? = R is nonzero. Thus R is not smooth over K,
even though Qpx is free.

(7) Let K = Fp(t) and R = K(t'/?) =~ K[z]/(a? —t). Then Qg = Rdax is free of rank 1 and the
I/1? 4, Rdx maps the generator to zero as above. We again have that R is not smooth over K, even
though R is a field (and hence regular).

(8) For a nontrivial étale map, let R = Zg and S = Z[i]o. Then S = R[xz]/(2® + 1) so the conormal map
is (22 +1)/(2% + 1)? <, Rdz with the generator mapping to 2 in Rdx. Since 2i is a unit, this map

is surjective, and bijective as well.
Lecture of March 21, 2023

2.5. Regular rings revisited. Recall that a Noetherian local ring (R, m, k) is regular if dim(R) = dimy (m/m?).

In particular, a zero-dimensional local ring is regular if and only if it is a field.

Proposition 2.35. Let (R,m, k) be a regular local ring.
(1) If f e m/m?, then R/(f) is a regular local ring.
(2) (R,m,k) is a domain.
(3) If I is an ideal, then R/I is reqular if and only if the minimal generators of I are linearly independent

in m/m? (i.e., the map I/mI — m/m? induced by inclusion is injective).

Proof. (1) Set d = dim(R) = dimg(m/m?). We have

dimk(m) — dimy( ":n y=d—1,

d—1 < dim(R/(f)) < dimk(n':‘RM) <d-1,

so equality holds and R/(f) is regular.

(2) By induction on d = dim R, where R is a regular local ring. If d = 0, then R must be a field, and
thus a domain. If d > 0, consider f € m\ (m2 v UpeMin(R) p). (Here we are using the strong version
of prime avoidance where we can avoid one or two arbitrary ideals and a finite number of prime
ideals.) By the first part, R/(f) is regular. By the induction hypothesis, this is a domain, so (f) is
prime. By choice of f, this is not a minimal prime. Given a prime ideal 0 < p g (f), if y € p, we
can write y = rf for some r € R, and since f ¢ p, r € p. Thus p = fp < mp, which by NAK implies
that p = 0. Thus 0 is prime, so R is a domain.

(3) From the first part, if fi,...,f; be a minimal generating set for I and their images are linearly
independent in m/m?, by induction on t we get that R/I is regular. Conversely, if the images of the
f’s are not linearly independent in m/m? suppose that the images of fi,..., f, form a basis for the

image; subtracting off copies of these, we may suppose the rest are in m?. Then R/(fi,..., f.) is a
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regular local ring, and R/I =~ R'/J for R’ = R/(f1,..., fa) some ideal J in the maximal ideal mR’.
Since R’ is a domain and J # 0, dim(R’/J) < dim(R'), and

dim(m(R/I)/m*(R/I)) = dim(mR'/m?R’) = dim(R'),
so R/I =~ R'/J is not regular. O

Recall that for a ring R and a prime p, the residue field of R at p is k(p) := R,/pR,. For a ring
homomorphism R 2, S and a prime p € Spec(R), the fiber ring of ¢ over p is k(¢,p) = (R~ p)~1(S/pS).
Since localization and quotienting are special cases of extension of scalars, we can also write this as k(¢,p) =
k(p) ®r S. The point of this construction is that the induced map on Spec from S — k(¢,p) induces a
bijection

Spec(r(¢,p)) — {q € Spec(S) | ¢*(a) = p}-

Lemma 2.36. Let R be a Noetherian ring. Let q be a prime ideal of R[x] and set p = q n R. Then either
(1) pR[z], with ht(q) = ht(p), or
(2) {g(x) | Ja € R~ p with ag(x) € pR[x] + (f(x))} for some f(x) € q, with ht(q) = ht(p) + 1.

Proof. First, we show every other prime is of the form above. We compute x(¢,p) = «(p)®r R[z] = k(p)[z].
Every prime in this ring is zero or principal. The preimage of 0 in R[z] is pR[x]. The preimage of some
(f(x)) for f(z) € r(p)[z] is the set of g(z) € R[z] that end up in pR[x] + (f(x)) after localizing at R \ p,
which is the formula above.

The height of p[z] is at least that of p (say h), since a chain

wsuSnG - Su=p

yields a chain
volr] Sulz] S wfr] G- & wle] = pla].
Consequently, a prime of the second type has height at least ht(p) + 1.

Finally, we compute the heights. Note that ht(p[x]) = ht(pR,[x] since any prime contained in p[z] does
not meet R\ p. Take a system of parameters (21,. .., 2;) for R,. Then pR,, is nilpotent modulo (z1,. .., 2zp).
But then pR,[x] is nilpotent modulo (z1, ..., 2zx) R[] as well, since a polynomial with nilpotent coefficients
is nilpotent. Thus, \/pRy[z] S /(21,...,2n)Rp[z] S 4/pRp[z], so equality holds, and ht(pR,[z]) < h =
ht(pR,) = ht(p), and this gives the formula in case (1).

For a prime of case (2), we note that Ry )[m] has dimension one, since killing the ideal of nilpotents

(215-,2n
pRy[x] yields a polynomial ring over a field, which has dimension one. Then, since (f[z];’ 3

is a localization

of ) [z], we have

(215521

R
ht(q) = dim(R[z]|y) < h+dim| ———— | + h<dim | ————
(a) = dim(R[z],) (o) (2
and we are done. O
Lecture of March 23, 2023

Proposition 2.37. Let R a Noetherian ring and suppose that Ry is a regular local ring for every prime

ideal p. Then for every prime ideal q of R[x], the local ring R[x]q is a reqular local ring.

Proof. Let q be prime in R[z] and p = g n R. Let h = ht(p) and ey, ..., e, € p be a basis for pR,/p*R,, so
for any p € p, there is p’ € p?Ry, and r;j € R, with p = 2 rie; +p in Ry.
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If g = pR[z], take ¢ = 3}, p;si(z) € pR[z]; then as above we have g = >, (3], i j€; + pj)si(z) in Ryx]
so qRy[z] = ((e1,...,en) + q*)Ry[z], so qR[z]q = ((e1,...,en) + ¢*)R[x]q, and hence qR[z],/q>R[z], is
generated by eq,...,e,. Thus, R[x]q is regular.

If g = {g(x) | Ja € R\ p with ag(x) € pR[z] + (f(z))} with f(z) € q, take ¢ = >, pisi(x) + f(x)so(x) €
pR[z]. Proceeding the same way as above, we get that qR[z],/q>R[z]4 is generated by e, ..., e, f(z), so
R[z]q is regular. O

Corollary 2.38. If K is a field, R = K[z1,...,x,] is a polynomial ring, and p < R is prime, then Ry is

reqular. Likewise, if R = Z[x1,...,xy] is a polynomial ring, and p < R is prime, then R, is regular.
2.6. Smoothness vs regularity.

Lemma 2.39. Let (R, m, k) be a local ring. Let B be an m x n matriz with entries in R. Then the following
are equivalent:

(1) R™ L, R™ is a split injection,

(2) K™ B, K™ s injective,

(3) m = n and some n x n minor of B is a unit.

Proof. (1) = (2): If AB = I, then AB = I, so B is injective.

(2) = (3): From linear algebra, the rank of a matrix is the size of its largest nonvanishing minor.

(3) = (1): Without loss of generality, say that B’ is the matrix of the first n rows of B, and det(B’) is a
unit. Then A’ = det(B’)~'adj(B’) satisfies A’B’ = I, so [A’|0]B = I. O

Theorem 2.40. Let K be a field, S = K[x1,...,x,] a polynomial ring over S, and R = S/I for an ideal I.
Let p be a prime ideal of R and q its preimage in S. Suppose that

(1) K is algebraically closed and p = m is a mazimal ideal, or

(2) more generally, there is a K -algebra right inverse to the projection map Sq/q?Sq — Sq/454-
Then the following are equivalent:
o R, is regular.
e The map K — R, is essentially smooth.
e The column Jacobian on a minimal generating set for 1S,, viewed as a matriz in k(q) = Sq/qSq is
injective.

Proof. First we observe that case (1) is a special case of case (2). Now let’s rock.

Under the hypothesis of (2), the map qqzss“'q LN #(q) ®s gk is injective, so the map % LA K(q) ®s Qg x

is injective if and only if the map IIfS“q — qq;?g“q is injective. Since Sy is regular, this happens if and only

if Ry is regular. But the map % 4, k() ®s gk is just the map given by the column Jacobian of the
q
generators of I viewed in k(q). This shows the equivalence of the first with the last.

On the other hand, we have the commutative diagram

J(Hr
R Ry, ®s, Q515

N T

154/1%8,

where R?t is a free module with basis in bijection with the minimal generators of IS, ¢ mapping each basis

element to the class of one generator. If K — R, is smooth, then d is a split injection, so I‘S’q/IQSq is free,
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and hence the map ¢ is an isomorphism. Then J(f)7 is a split injection, so by the lemma, the column
Jacobian must be injective modulo g5y, yielding the last condition.

Conversely, if the map J(f)” is injective modulo qSg, it is split injective by the lemma, forcing ¢ to be
an isomorphism, and then forcing d to be a split injection, and hence forcing R, to be essentially smooth
over K. (]

Corollary 2.41. If R is a finitely generated algebra over an algebraically closed field K, then R, is reqular
for all primes p if and only if K — R is smooth.

3. COEFFICIENT FIELDS AND COMPLETE LOCAL RINGS

3.1. Transcendence bases and p-bases. Let K < L be fields. Recall that [ € L is algebraic over K
if it satisfies a nonzero polynomial equation over K and transcendental otherwise. An algebraic element is
separable if it is a simple root if its minimal polynomial, and inseparable otherwise. The only way an algebaric
element can be inseparable is if the its minimal polynomial and the derivative of the minimal polynomial are
not coprime, and since the minimal polynomial is irreducible and the degree of the derivative is lower, this
forces the derivative to be zero. Thus, inseparable elements can only occur in positive characteristic, and
the degree of any inseparable element must be a multiple of p, since its minimal polynomial can only contain
exponents that are multiples of p. So algebraic extensions in characteristic zero are always separable.

Lecture of March 28, 2023

An algebraic extension is separable if every element is separable. We recall that by the primitive element

theorem, every finite separable extension is generated by one element. We then have the following.
Proposition 3.1. If K € L is a separable algebraic extension of fields, then L is formally étale over K.

Proof. If K < L is finite separable, then we can write L = K[z]/(f(z)) with f'(z) a unit in L. Then the
conormal map is
(F@)/(f(@)* 5 Ldz [f()] = f'(2)dr.

The source of this map is a one-dimensional L-vector space generated by [f(z)], so this map is an isomor-
phism, and thus L is étale over K.

If K[f1,...,fn] € L is a finitely generated K-algebra, then since each L is algebraic over K, each f; is
integral over K, so K € K[ f1,..., fn] is integral, and since K[f1,..., fn] € L is a domain, it is a field. Since
it is finitely generated as an algebra, by Zariski’s lemma, it is a finite extension of K, and thus étale over K.

The statement then follows from the following lemma. |

Lemma 3.2. Let R be an A-algebra. If every finitely generated A-subalgebra of R is formally unramified or

formally étale, then the same is true for R.

Proof. Let X = {xz, | r € R} be a set of indeterminates in bijection with R, and map A[X] — R by sending
x, +— 1, with kernel I. For any finite subset T' € R, take X7 = {x; | t € T'} and let I be the kernel of the

map A[Xyp] — A[T] < R. We then have a commutative diagram of inclusions

Pk
0— =1 — A[X] R 0

Since A[X] = Uy A[Xr] and It = I n A[X7], we have that I = | J, It and likewise I? = | I%.
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We also have commutative diagrams

dr
Ir — @, A[T]dz,

P,k

I— @, Ria,

and the union over T' of the top rows is the bottom row. It is easy to see that the image of d is the union of
the images of dr and likewise for the kernel. So, if each dr is injective, the same holds for d, and if each dp
is bijective, the same holds for d. This establishes the claim. O

Let K = L. A subset {l»} of elements of L is algebraically independent if the K-algebra map K[{zx}] — L
given by ) — [ is injective; i.e., there are no nontrivial relations on the elements over K. In this case, there
is an injective map from the field of rational function K ({zx}) — L with image K ({lx}) € L. If L = K({l»})

for an algebraically independent subset {l)}, we that L is a purely transcendental extension of K.

Definition 3.3. Let K < L be fields. We say that a subset {5} is a transcendence basis for L over K if it
is algebrically independent and every element of L is algebraic over K ({l,}).

We say {l,} is a transcendence basis for L (without any K) if it is a transcendence basis over the ground
field (Q or F,).

Lemma 3.4. Let K € L be fields.

(1) A subset of L is a transcendence basis over K if and only if it is a mazimal algebraically independent
subset of L.

(2) Ewvery algebraically independent subset of L is contained in a transcendence basis.

Proof. (1) If {Ix} and I € L, then [ is algebraic over K({l)}), so there is a nonzero polynomial relation
"+t 4+ 47, =0 with r; € K({I,}). Writing r; = % and multiplying by the product of the
@:;’s gives a nonzero polynomial relation on the [)’s and I. Thus, {l,} is a maximal algebraic subset.

The converse is similar.
(2) Given a nested union of algebraically independent subsets, the union is as well, since a relation on
one of these sets involves finitely many elements, all of which must occur in one of the sets in the

chain. The claim then follows from Zorn’s Lemma. |

Example 3.5. (1) Let K = Q(22,2y,%%). Then K = Q(z?,zy), since y?2 = (zy/2?)?, and 22, zy are
algebraically independent, since given a polynomial F(u,v) with F (2%, xy) = 0, there must be no v
terms (because of y) and then no u terms (because of ). Thus, 22,y is a transcendence basis (and
K is purely transcendental). Also, Q(22,%2?) < K is algebraic, since (zy)? — (22)(y?) is a relation,
so x2, 3?2 is also a transcendence basis.

(2) Let K = C. We claim that any transcendence basis for C is uncountable. Note first that a polynomial
ring in countably many variables over a field is a countable dimensional vector space: there are
countably many monomials. Then, since Q is countable, Q[z1,z32,...] is a countable Q-vector
space, so is countable. Then Q(x1,xo,...) is classes of polynomials over polynomials, and there are
countably many pairs of polynomials. Finally, the algebraic closure of a countable field is countable,
since there is an injection from the set of polynomials in one variable to over that field to it. So any

field of countable transcendence degree over Q is again countable, which C is not.
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Let K < L be fields of characteristic p > 0. Recall that LP? = {I? | [ € L} is a subfield of L. For a subset

T = {l,} of elements of L, we write
Tl=ah = {515 | 0 < a; < g}

Definition 3.6. Let K < L be fields of characteristic p > 0. A subset T' = {l)} is

e p-independent over K if TI<P! is linearly independent over K (LP).
e p-spanning over K if TI<P] spans over K (LP).
e a p-basis over K if TI<P] is a basis for K (LP).

We say T = {l»} is a p-basis for L (without any K) if it is a p-basis over the ground field (F,,).

Lemma 3.7. Let K < L be fields of characteristic p > 0.

(1) A subset of L is a p-basis over K if and only if it is a mazimal p-independent subset of L.
(2) Every p-indepdendent subset of L is contained in a p-basis.

Proof. (1) It is clear that a p-basis is a maximal p-independent set. For the other direction, by maximal-
ity, if I € L, there is a relation P~  f,_1 +- - +1f1 + fo = 0 with f; € K(LP)-TI<Pl < K(LP)(T). This
implies that [K(L?)(T)(l) : K(LP)(T)] < p. Since the minimal polynomial divides 2 — [?, and this
factors as (z —1)? over L, it must be a power of z—[, but if 1 < a < p, (x —1)* € KP[z], its derivative
is nonzero and a is a root, contradicting that it is the minimal polynomial, so [ € K(L?)(T). But
using the relations I” € LP, we have K (LP)(T) = K(LP)T!<P] so T is a p-basis.

(2) Straightforward application of Zorn’s Lemma. O

Definition 3.8. K < L is an extension of fields of positive characteristic, the p-degree of the extension,

written p-deg, (L) is the cardinality of a p-basis for the extension.

Note that if T' is a finite p-basis, then [L : K(LP)] = p!T!, and if T is an infinite p-basis, [L : K(LP)] =
IT| = p/TI. Thus, the p-degree is well-defined, and p?-9°8x (L) = [L : K (LP)].
Lecture of March 30, 2023

Example 3.9. (1) If K is perfect, then K = KP, so the empty set is a p-basis. In particular, this is
true for any finite field. In particular, the p-degree is zero.

(2) If K is perfect and L = K(t) then LP = KP(t?) = K(t?) so L = K(LP) - {1,t,...,t*?~'}. Thus, t
is a p-basis for L over K, and the p-degree is one. Similarly, for a purely transcendental extension
of a perfect field, the transcendence basis forms a p-basis. In particular, the field F},(¢1,t2,...) has
infinite p-degree.

(3) Let F be perfect. For the field extension F(t) € F(t'/P"), the element ¢'/?" forms a p-basis, but no
element of the form £/7° with ¢/ < e does. In particular, for the tower F,(t) < F,(t'/?) < Fp(tl/pQ),

each intermediate extension has p-degree one, and the composition has p-degree one as well.

Remark 3.10. Let T be a p-basis for L over K. Then any element of L can be written uniquely as a
monomial in <P with coefficients in K (LP). For to € T, define d%) to be the K (LP)-linear map that maps
the monomial ¢3°¢]* --~t?j to aot‘goflt‘fl ---t?j. Note that this depends not just on ¢ but the choice of an
entire p-basis. We claim that this is a K-linear derivation. By construction, it is well-defined, additive, and
kills K, so we just need to check the product rule, and by additivity, again just on monomials in 71<P],

which is then clear.
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Moreover, one can take formal combinations of these derivations (as we did with polynomial rings) since

every element is expressed in terms of finitely many elements of the p-basis. So there are derivations of the

form

d
th%7

teT

which map t to I;.

On the other hand, any K-linear derivation on L is zero on LP, so K(LP) is in the kernel, and hence

is K(LP)-linear. L is generated as a K (LP)-algebra by T, so derivations are uniquely determined by their

values on T'. Thus, every derivation is of this form.

Theorem 3.11. Let K € L be an extension of fields. Let T < L.

(1)

(2)

Proof.

If K and L have characteristic zero, then {dt | t € T'} is a vectorspace basis for Qpk if and only if
T is a transcendence basis for L over K.

If K and L have characteristic p > 0, then {dt | t € T} is a vectorspace basis for Qrk if and only if
T is a p-basis for L over K.

(1) If T is a transcendence basis, we have K € K(T) < L with K(T) a field of rational functions
in the t’s and K (7T') < L separable algebraic. We have Q7 k is free over K[T'] in the basis dt, since
it is a polynomial ring, and by localization Qg 1y k is a vectorspace on the same basis. Furthermore,

U1y )k = 0 by the same steps. From the Jacobi-Zariski sequence

Tk — L®k 1) Qi) — Lok — Qrirr) — 0

plus the fact that L is étale over K(T') we get that I'zjx (1) = Qrjx(r) = 0 and L Qg (1) Qi ()5 =
Qp K, 80 Qp i is free on dt.

For the other direction, suppose that {dt} is a basis for Qp . If F(z1,...,2,,) is a polynomial
such that F'(t1,...,t,) = 0 is a relation of smallest degree, then for some i, leTF,; # 0 and has lower
degree than F', so gfl (t) # 0 for some i . Then 0 = dF =}, L%(t)dti is a nonzero relation on the

t;’s. Thus, T is algebraically independent. If not a transcendence basis, we can properly include T

in a transcendence basis, and by the first direction, we get that dt is a proper subset of a basis, so
it does not span €7x. Thus, since it spans, 7' is a transcendence basis.

Suppose that T'is a p-basis. To show that {dt | ¢ € T'} is a basis for the vectorspace |k, it suffices
to show that for any function f : T' — L, there is a unique L-linear map ¢ : 2y — L such that
¢|r = f. This follows from the discussion above.

On other hand, if {dt} is a basis for Q| , we claim that T"is p-independent. Indeed, if not, we can
take ty,...,t, € T such that {t1,...,t,}l<P] are linearly independent over K (LP) and so, without
loss of generality (saying some monomial with ¢; occurs), the degree of t; over K(LP,tq,...,t,) is
less than p, so t; € K(LP,ta,...,t,) = K(LP) - {to,...,t"}<P). So, t; = G(ta,...,t,) for some
polynomial G(z2,...,2,) € K(LP)[z2,...,x,]. We then have dt; = >},_, j—g(t)dti, contradicting
linear independence. If not a p-basis, then we can properly include T in a’ p-basis, obtaining a

contradiction as in the previous case. O

3.2. Completion. Let R be a ring, I an ideal, and M an R-module.
Define

1

d N =
1(m, ) inf{e >0 |m#m’ mod I*M}’
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with the convention 1/00 = 0. This is a measure of how close m and m’ are in terms of powers of I, scaled
so that close in the sense of high powers makes this distance smaller. This function satisfies most of the
axioms of a metric: clearly dj(m,m’) = 0 with equality if m = m/, and if d;(m,m”),d;(m',m") < 1/e so

m—m",m' —m"” eI°M, then m —m' € I°M and d;(m,m’) < 1/e, so
dr (mv m/) < maX{dI (TTL, m//), dI(m/a m”)}(g df(ma m//) + df(m/7 m”))'

However, m # m’ does not always guarantee dy(m,m’) > 0: for example, in a ring R x S considered as a
module over itself, with the ideal I = 0 x S, we have I = I¢ for all e, so d;((r, s), (r,s")) = 0.

Definition 3.12. Let R be a ring, I an ideal, and M an R-module. The I-adic topology on M is the
topology with open basis {m + I*M | m € M,a € N}; that is, the topology whose open sets are arbitrary
unions of sets of the form m + I®M; this is the topology arising from the pseudometricspace structure from

the function dj.

The central case is when M = R, so the basic open sets are of the form r + I". The point of the I-adic
topology is that two elements are close if they are congruent modulo a large power of I.

Let us translate some basic topological notions into this topology.

Proposition 3.13. Let R be ring, I an ideal, and M an R-module. Let {a,} be a sequence of elements in
M and ae M.

e limm,, = m in the I-adic topology if and only if for any e € N, there is some d € N such that for all
n>=d, m,=m mod I[°M.

e In particular, limm,, = 0 in the I-adic topology if and only if for any e € N, there is some d € N
such that for alln = d, m,, € I°M.

e {ay} is Cauchy if and only if for any e € N, there is some d € N such that for alln,n' = N, m, =m
mod I°M.

e If S is another ring, J ideal of S, and N an S-module, a function f : M — N is continuous with

/
n

respect to the two topologies if for any e € N, there is some d € N such that m = m’ mod I¢M
implies f(m) = f(m') mod J°N; that is, f(m + IM) < f(m) + J°N.

In particular, if ¢ : R — S is a ring homomorphism and ¢(I) S J, then ¢ is continuous (w.r.t. I
and J topologies), any R-module homomorphism o : M — N is continuous (w.r.t. I topologies), and

any derivation 6 : R — M is continuous (w.r.t. I topologies).

Definition 3.14. We say that a module M is I-adically separated if (), .y "M = 0.

If (R, m) is local, we simply say M is separated to mean m-adically separated.

neN

This is equivalent to saying that limits are unique in the I-adic topology. Indeed, m € (), I"M, then
the limit of the constant sequence {m} is both 0 and m, so unique limits implies separated, and conversely,
if limm,, = m and limm,, = m' then m —m’ € (| _y ["M so separated implies unique limits. By the Krull

neN
Intersection Theorem, any finitely generated module over a local ring (R, m) is m-adically separated.

Definition 3.15. We say that a module M is I-adically complete if every Cauchy sequence in M has a
unique limit.
If (R, m) is local, we simply say M is complete to mean m-adically complete. In particular, a complete

local ring is a local ring that is complete with respect to its maximal ideal.
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Example 3.16. (1) Let (R,m) be an Artinian local ring, so m* = 0 for some ¢. Then any Cauchy
sequence is eventually constant: taking e = ¢, there is a d such that for n,n’ > d, r, = r,, mod m®
SO 7, = 7. Thus an Artinian local ring is complete.

(2) Let A be a ring and R = A[xy,...,2¢]. Then R is not (x1,...,z:)-adically complete, since the
sequence (Z?:o x%) is Cauchy but has no limit: the limit would have arbitrarily large degree.

(3) Let A be aring and R = Afzy,...,x¢]. We claim that R is (z1,...,z:)-adically complete. Indeed
the condition for a sequence {f,(z)} to be Cauchy is that for any e, there is some d such that for
n,n’ = d, the coefficients up to degree e in f,,(z) and f,/(z) agree. That is, the z]* - - - x}*-coefficient
of fn(z) for n sufficiently large (greater than the d coming from e = a; + - -+ + a;) is well-defined.
The unique power series with these coefficients is the unique limit of {f,(x)}. In particular, a power
series ring over a field is a complete local ring.

(4) If R is I-adically complete, and J is an ideal of R, then R/J is I(R/J)-adically complete. In

particular, a quotient of a power series ring over a field is a complete local ring.

Lemma 3.17. Let R be a ring, I an ideal, and M an R-module. Let {r,}, {sn} be sequences in R and
{my}, {ln} be sequences in M.
(1
2

) If {rn} and {s,} are Cauchy, then so are {r, + s,} and {r,s,}.
(2) Iflimr, =0 orlims, =0, then limr,s, = 0.
(3) If {my} and {l,} are Cauchy, so is {my + l,}.
(4) If {rn} and {m,} are Cauchy, then so is {r,m,}.
(5)

5) If limm, =0 or limr, =0, then limr,m, = 0.

Proof. Note that (1) and (2) are special cases of the rest. If {m,}, {l,}, and {r,} are Cauchy, fix e and take
a d that “works” for all three sequences (taking the max). Then for n,n’ > d, (m, + 1) — (mp + L) =
(mp, —my) + (Ly — L) € 1M, and rpmy, — Py = TpMy, — T My + Ty — Ty = (1 — T )My, +
T (Mg, — My ) € I°M, so this d works for each.

If limm, = 0, fix e and take a d that “works”. Then for n > d, r,m, € rp,I°M < I°M; similarly if
limr, = 0. O

It follows from this lemma that given a ring R, and ideal I, the set of Cauchy sequences with pointwise
addition and multiplication forms a ring, and the set of sequences that converge to zero forms an ideal in
this ring. There is a homomorphism from R to this ring that sends an element to the associated constant

sequence.

Definition 3.18. Let R be a ring and I an ideal. The I-adic completion of R is the ring R! given by the
quotient of the ring of Cauchy sequences by the ideal of sequences that converge to zero. This is an R-algebra

given by the map sending an element to the class of a constant sequence.

If M is an R-module, the set of Cauchy sequences in M is a module over the ring of Cauchy sequences
in R, and the set of sequences converging to zero is a submodule. One can check that this induces a well-
defined module action of R’ on the set of equivalence classes of Cauchy sequences on M modulo sequences

converging to zero.

Definition 3.19. Let R be a ring, I an ideal, and M a module. The I-adic completion of M is the RT-module
M! given by the quotient of the ring of Cauchy sequences by sequences converging to zero in M.

Remark 3.20. Let R be aring, I an ideal, and M a module. Given a Cauchy sequence (a,) in M, by passing

to a subsequence, we can assume that for any e, and any n,m > e, a,, — a,, € I°M; we just keep skipping to
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the “dth term.” Thus, we can write a. = ag+ (a1 —ag) + (az —a1) +- -+ (ae — ae_1) With ac —a._1 € [ M.
In this way, we can represent any element in M7 as a power series with nth term in I™M; conversely, any

such series is clearly Cauchy, so represents an element of the completion.

Remark 3.21. The following alternative description of completion is also useful. Consider the set of sequences
(7,) with 7, € R/I"™ such that the image of 7,1 under the quotient map R/I"*1 — R/I" is 7, for all n.
The sum or product of two such sequences is again of the same form, so this is a ring, and there is an obvious
map from R to this ring.

Lecture of April 6, 2023

Let’s say that a sequence in R/I x R/I?> x R/I® x --- is consistent if for any n, the image of the nth
component under the quotient map R/I™ — R/I"~! equals the n — 1st component. We claim that there is
an isomorphism from R! to the ring of consistent sequences. To define it, note that for a sequence (r,) and
any e, the Cauchy condition implies that the value of r,, modulo I¢ stabilizes at some point; set 7. to be
that value. Then (7.) satisfies the compatibility condition above. Given Cauchy sequences (ry,), (sn), it is
straightforward to see that the associated sequences respect sum and product. Furthermore, a sequence (r,)
converges to zero if and only if the stable value of r,, modulo I¢ is zero for all e, so this map is well-defined
from the completion, and injective. Given any sequence in the target, taking arbitrary lifts for the elements
to R yields a Cauchy sequence, so this map is surjective.

The same construction works just as well for modules. One advantage of these constructions is that we

have well-defined representatives for objects.
We summarize:

Proposition 3.22. Let R be a ring, I an ideal, and M a module. There is an R-algebra isomorphism
R! ~ {(Fy,7a,73,...) € R/I x R/T> x R/I?> x -+ | Try1 =7n mod I"}
and isomorphism of RI-modules

M =~ {(my, M2, ms,...) € M/IM x M/I>M x M/I?M % --- | ihpy1 =, mod I"M}.

Example 3.23. (1) If R = Al21,...,2,], then R®) =~ Az, ..., z,].

(2) The I-adic completion of R®" is (R7)®". Indeed, Cauchy implies Cauchy in each coordinate using
nothing, and Cauchy in each coordinate implies Cauchy, since for each e, we can take a d for each
coordinate, and the max of these “works”. Similarly, converging to zero means converging to zero
in each coordinate.

(3) The I-adic completion of R®N contains (}AEI )®N by the same argument as the interesting direction
above, and can be identified with a subset of [ [ R! by the same argument as the boring direction.
However, it is strictly between the direct sum and direct product. Indeed, an element of the com-
pletion corresponds to a sequence of elements in R! such that for every e, there are at most finitely
many entries that are not in I e(RI )-

(4) The (z)-adic completion of the K [z]-module K[z,z~!] is zero, since oy 2" K[z, 27| = K[z,z7!].

Given a ring homomorphism o : R — S with ¢(I) < J, there is an induced map & : R — S§7.
Indeed, a continuous map sends a Cauchy sequence to a Cauchy sequence, and a sequence converging to
zero to another converging to zero. It is easy to see this is a ring homomorphism. Likewise, a module

homomorphism a : M — N induces a module homomorphism & : M! — NT.
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Lemma 3.24. Let R be a ring, I be a finitely generated ideal, and M be an R-module. Then there are
equalities
I°M" = { equivalence classes of Cauchy sequences with entries in I°M}

= { consistent sequences with first e components equal to zero }.

Proof. We start with the first equality. Clearly any sequence in [ eMT is represented by a sequence with
entries in I¢M, so the other containment needs to be shown. Let z ee M7 be represented by a Cauchy
sequence with entries in I°M. Take a series representation: = = Z:;o an, with a, € I"M. We must
have a; = 0 for ¢ < e, since z = Z;:o a; mod I'. Let I¢ = (f1,...,f:). We can write a, = Y, f;bn,;
with b, ; € I""°M for all n > e. Then each sequence sg) = ZZ:e by, ; is a Cauchy sequence in M, and
r= Z_j i Sgij)'

The second equality is straightforward: if each entry is in ¢, then the stable value modulo I"™ for m < d
is zero, and conversely if the stable value modulo I¢ is zero, by passing to a subsequence, we can assume

that all elements are in I€. O

Proposition 3.25. Let R be a ring, I be a finitely generated ideal, and M be an R-module. The completion
M7 s IRI—adically complete.

Proof. Given a Cauchy sequence in RI , for any e, there is a stable value for modulo I e Rl , so the first e
coordinates stabilize. Take the sequence of stable values; this satisfies the consistency condition, so this is

an element of the completion. It is then clear this is the limit. O

Proposition 3.26. Let (R, m) be a Noetherian local ring. Then R (the m-adic completion of R) is a complete

local ring with mazimal ideal mR, and for any R-module M, M s complete.

Proof. Since m is finitely generated, we know that mR is the set of Cauchy sequences whose stable value

mod m is nonzero; by passing to a subsequence, we can assume any such sequence (a,) has elements that are
1 1 —1 -1 _ a,/—a —1\ .

all units. Now, if a, — a,s € m®, then a,' —a,," = e m®, so (a, ') is a Cauchy sequence, and its class

is an inverse for (a,). This shows that R is local with maximal ideal mR. From the previous proposition, R

and M are then complete. O

Proposition 3.27. (1) If R — S is surjective, and J = IS, then the induced map Rl — 87 on
completions is surjective.
(2) If M — N s a surjective map of R-modules, then the induced map M! — NT on completions is
surjective.

(3) The completion of a Noetherian ring with respect to any ideal is Noetherian.

Proof. Given an element of s € 57 we can write s = Zf:o Sp with s, € J”. We can then choose a preimage
of s, that is in I™, and inductively, we get a sequence of preimages that is Cauchy. Thus the induced map
on completions is surjective.

The second statement is similar.

For the last, let T = (f1,...,fn) and take the induced map on completions from R[zi,...,z,] — R
sending x; — f;. This expresses the I-adic completion as a quotient of a power series ring in finitely many

variables over a Noetherian ring, which is again Noetherian. O
Lecture of April 11, 2023

3.3. Three main technical things about completion.
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3.3.1. Flatness. The key to exactness properties of completion is the Artin-Rees lemma.

Theorem 3.28 (Artin-Rees Lemma). Let R be a Noetherian ring, I an ideal, and L M finitely generated

R-modules. Then there exists a constant ¢ such that for alln, I"M n L < I"°L.

Proof. Consider the ring R[It] = @,y I"t". We think of this as N-graded with deg(R) = 0 and deg(t) = 1,
nen I"Mt™ is a graded R[It]-
module, since I™t"I™M < "t Mt"+*™  One checks quickly that a generating set for M generates M* as
an R[It]-module, so it is finitely generated. The subset L# = @, (I"M n L)t" is a submodule of M*,
and in fact an R[It]-submodule: I™t"(I"™M n L)t™ < " T Mt"t™ ~ Lt"*™. Since I is finitely generated,

R[It] is algebra-finite over R, and hence Noetherian. Thus L# is a finitely generated module; in particular,

so the direct sum expression is exactly the graded pieces. Then M* = P

it is generated by elements of degree at most ¢ for some ¢. Then [L#], < [R[It]]sn_c[L7]<c, so ,dropping
the t", I"M n L I"¢(I"M n L) < I"°L. (|

Example 3.29. Let R= K[z], I = (z),and L = (z') € M = R. Thenforn>t, "M nL = (2™) n (a!) =
(z") = (2" %) (a?t) = I"7'L. In particular, the “Artin-Rees constant” can be arbitrarily large, even in very

simple examples.

Corollary 3.30. Let R be a Noetherian ring, I an ideal, and L = M finitely generated R-modules.

(1) If a sequence in L converges to zero in the I-adic topology in M, then it converges to zero in the
I-adic topology in L.

(2) If a sequence in L is Cauchy in the I-adic topology in M, then it s Cauchy in the I-adic topology in
L.

Theorem 3.31. Let R be a Noetherian ring.

&

(1) If0 - L S M 5, N = 0 is an exact sequence of finitely generated R-modules, then 0 — LT <>
LNy — 0 s exact.

(2) If M is a finitely generated R-module, then R @p M =~ M.

(3) R! is a flat R-algebra.

Proof. (1) We have already seen that J is surjective. We identify L with o(L) and N with M /L.

To see that & is injective, let (I,,) be a Cauchy sequence in L. If lim{,, = 0 in M, then by the
corollary, liml,, = 0 in L so (l,,) represents the zero element in LT. This shows injectivity.

We also need Artin-Rees for exactness in the middle. Let (m,) be a Cauchy sequence in M
representing an element in the kernel of 3. Then for any e, there is some d such that for n > d,
B(my,) € I°N. This implies that m,, € I*M + L, so write m,, = m/, +l,, for each n, with m/, € I°M.
That is, we can write (m,,) as the sum of a sequence (m/,) in M that converges to 0 and a sequence
(In) in L. Then (I,,) = (my) — (m),) is a difference of Cuachy sequences in M, and hence Cauchy in
M, and thus Cauchy in L by the lemma. Thus, (m,) represents an element in the image.

(2) Take a presentation:

R™ 4 R" & M 0.
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We can apply base change or completion; since the completions are R! -modules, there are maps via

the universal property of extension of scalars:

R1®RRmi>RI®RRn*>RI®RM*>O

l | |

R’ R’ N 0

The top rows is exact by definition of extension of scalars, the bottom by part (1). The first two
down arrows are isomorphisms by earlier example. The last map must then be an isomorphism.

(3) From parts (1) and (2), it follows that for any inclusion of finitely generated modules, the extension
of scalars to the completion is injective. Given a general inclusion of modules, L € M, if RIQrL —
RT®p M is not injective, take an element in the kernel. Take a generating set for L and one for M
that contains it; then one can take a generating set of relations for L and extend it to a generating
set of relations on M. An element in the kernel of R @ L — R @ M is a linear combination of
finitely many generators S < L, and a combination of finitely many relations on the generators of
M. Let L' be the submodule of L generated by S and M’ the submodule of M generated by the
elements occurring in the relations on generators of M making the element zero. Then the element

is in the kernel of the corresponding map. (]
Example 3.32. (1) Let R = K[z], M = K[z,27]/K[z], and

1
0->K-——> M5 M-—0.
x
Then the completion is just

0>K—0—0-0,

which is no longer exact.
(2) Let R = K[z], and consider the sequence

0->PRELEPRS PR/ -0,

where ji(e;) = 2'e; and 7 is the projection map. Then the element (z, 2%, 22,...) is a valid element
of @,, R and is in the kernel of 7, but is not in the image of /i, since (z,z,z,...) is not a valid
element of @,, R.

Corollary 3.33. If A is Noetherian and R = A[x1,...,x,)/1, then R®) =~ Alxy, ..., x,]/TA[z1,. .., z0].

Proof. First, we note that the (z)-adic completion of R as a ring is the same as the (z)-adic completion of

R as an A[z1,...,z,]-module: Cauchy and convergent sequences are the same in either. Then, the (z)-adic
completion of R is the Afz1,...,z,]-module with the same presentation; i.e., Afz1,...,z,]/IAfz1, ..., x.].
O

3.3.2. Super NAK.

Theorem 3.34 (Complete NAK). Let (R, m, k) be a complete local ring, and M be a separated R-module.

Then, for mq,...,m; € M, we have

M =" Rm; — M/mM =) k.

Proof. The implication (=) is clear.
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For the other implication, we have that M = )., Rm; + mM. Consequently, mM = > . mm,; + m2M, etc.

Then, for m € M, write

m = Zri,omi + 11, 7,0 € R, tyemM
i
t1 = Zri,lmi + ta, i1 EM, to € sz
i
to =Z7‘i,2mi+t3, 7,2 em2, t3€m3M
i
The sequences {r; o, 7, 0+74,1,7i,0+7:,1+7i2, - . . } for each ¢ are Cauchy, so we obtain elements r; = Zj ri; € R.

Consider the element m = )., 7;m; € M. To compute m — 7m modulo m" M, we may replace r; by 27;01 Tijs

and we see the difference is congruent to t,, which is hence congruent to zero. Thus m —m € m" M for each
n. Thus, m = m, so M = Y, Rm,. O

3.3.3. Hensel’s Lemma.

Theorem 3.35 (Hensel’s lemma). Let (R, m, k) be a complete local ring. Let F € R[z] be monic. Suppose
that the image of f of F in k[z] factors as f = gh with g,h € k[z] monic and (g,h) = 1. Then there exist
G, H € R[x] monic with images g(z), h(zx) € k[z] respectively and FF = GH.

Lecture of April 13, 2023

Proof. The idea is to inductively solve modulo m™, where the base case is the given hypothesis. Suppose we
have G,,, H,, € R[z] such that G,, = g, H, = h and F — G,,H,, € m"[x]. Note that the leading coefficients

cancel, so this difference has degree less than that of F'. Thus, we can write
F—GuH, =Y UV, Uem",V;e R[z] deg V; < deg(F).
Since (g, h) = 1, we can write a;g + b;h = V; with a;, b; € k[z]; after replacing a; with the remainder modulo
h and changing b; appropriately, we can assume that deg(a;) < deg(h). Then,
deg(hb;) = deg(V; — aig) < deg(f) = deg(g) + deg(h), so deg(b;) < deg(g).
Now, pick A4;, B; € R[z] with A; = a;,deg(A;) = deg(a;) (likewise with B’s), and set G,,1 = G,, + >, U; B;,
H,i1 = H, + Y, U;A;. These polynomials then satisfy the same hypotheses (modulo m™*!). Indeed the
degree business guarantees these are still monic and:
F—Gni1Hyy = F = (Gn + ) UiB)(Hy + Y. Ui Ay)
= F = GuH, — Y UiB;H, — Y UiA;Gp, — (O UiB:) (), Ui Ay)
= DUV = Y. UiBiH, = Y Ui AiG, — (Y. UiB:) (O Ui Ay)
The last term is in m?"[z] € m™*1[z]. Thus, modulo m"*![z] we have
Y Ui(Vi = BiH,, — A;Gy).

Since U; € m"[z] and V; — B;H,, — A;G,, € m[xz], this difference is zero.

The elements {G,} and {H,} then form a Cauchy sequence converging to the required elements. O
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Corollary 3.36. Let (R,m,k) be a complete local ring, and F € R[x]. If f = F € k[z] has a simple root a

in k, then F has a simple root a € R with a mod m = a.

Proof. If f has a simple root in k, then it factors in k as (z — a)g, with g coprime to x — a. We can lift this

factorization by Hensel’s lemma, to get the same type of factorization in R, yielding a simple root. O

Example 3.37. We can use Hensel’s Lemma to show that the polynomial 1 + x has a square root in
R = C[z]. This is the same as showing that 7% — 2 — 1 has a root. Going modulo = we get T? — 1, which

has T'=1 as a simple root. By Hensel’s Lemma, we get a root in R.

Example 3.38. The hypothesis of simple root is necessary. Indeed, over R = C[x,y], the polynomial

T? — xy has 0 as a simple root modulo (x,%), but no root in R, since zy is not a square.

Example 3.39. Consider the ring R = C[x,y]/(y? — #* — 2®). This ring is a domain, and S = R, , is as
well. Geometrically, this corresponds to a curve with a crossing at the origin. Even locally, this is irreducible.

Clzy] 5y the element 2?2 — 2% = 22(1 + x) is a square, so the equation

However, in the completion S = =2 —%)

factors, and S has two minimal primes corresponding to the two branches of the curve near the origin.
3.4. Coefficient fields and Cohen Structure Theorem.

Definition 3.40. Let (R, m, k) be a local ring. A coefficient field for R is a field K < R such that the map

K € R — k is an isomorphism.

Note that a local ring can have a coefficient field only if it contains a field, which is equivalent to having

equal characteristic. In this case, the map from any subfield to the residue field is always injective.

Example 3.41. (1) Let R = R[x](z241). Then R/m = C, but there is no coefficient field for R, since
any element in R is a rational function over R, which squares to an element that is a nonnegative
function, so there is no solution to 22 +1 = 0 in R.

(2) Let R = C[x,9y](z). Then C(y) and C(zx + y) are two different coefficient fields for R.
(3) Let R = Fp(t)/[a?]\(xp_t). This is a complete local ring, with residue field F,(¢)[x]/(z? — t) = F,(t'/?).
We claim that no coefficient field contains ¢t. Suppose otherwise that K is a coefficient field
containing ¢, and hence F,(¢). Then there is an element r € K € R with r? = ¢. Going modulo
(zP —t), there is a unique pth root of ¢ in the residue field, so we must have r = & mod (2P —t), so
r =1z + (2P —t)g. But then r? = 2P + (2P —t)PgP = 2P mod (zP —t)?, but 2P # ¢t mod (2P —t)?, a
contradiction.
However, we claim that Fj(z) € R is a coefficient field. First, we note that the field of rational
@r—t) = Fplt; @] 1oy, since Fplz] A (2P — O)F[t, 2] = 0, so

every element of F,[2] maps to a unit in F,()[z]z»—s), and a local ring injects into its completion.

functions of z is contained in F,(¢)[x]
But 2 € R maps to t'/? in the residue field, so this is a surjective map of fields, and hence an
isomorphism.

Lecture of April 18, 2023

Lemma 3.42. Let (R, m, k) be a local ring of equal characteristic. Then any subfield of R is contained in a

maximal subfield, and if K is a mazximal subfield, the extension K € k is algebraic.

Proof. The first part is a straightforward application of Zorn’s lemma. For the second, let K < R be a

maximal subfield. Suppose that 6 € k is transcendental over K, and let r € R be a lift of . For any nonzero
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polynomial f(z) € K[z], we must have that f(6) 0 in k, so f(r) is not in m; i.e., is a unit. Thus the map
K[z] — R is mapping x to r is injective and extends to a map K(z) =~ K(r) € R. This contradicts the
maximality of K. O

Theorem 3.43. Let (R,m, k) be a complete local ring of equal characteristic zero. Then every mazimal
subfield of R is a coefficient field. In particular, every subfield of R is contained in a coefficient field.

Proof. Let K be a maximal subfield. By the lemma, K € k is algebraic, and by the hypothesis of charac-
teristic zero, is separable algebraic. Suppose that there is some 6 € k . K. Then « € k is a simple root of
some irreducible monic polynomial f € K[z]. We have f € K[z] € R[x] — k[z], so we can apply Hensel’s
lemma. Thus, f has a simple root r in R that has image 6 in k. Then K[z]/(f(z)) = K[r] € R is a larger
subfield of R, contradicting minimality. O

Lemma 3.44. If © is a p-basis for k, then OL<P°] is a basis for k over kP".

Remark 3.45. We will need to consider subrings of p°th powers below. For a ring R of positive characteristic,
the set of its p°th powers is a subring RP" as a consequence of vanishing of binomial coefficients mod p. If
(R,m, k) is local, the set of p¢th powers of elements of m is the unique maximal ideal of RP, and the residue
field is kP°. We will need to consider both the set of p°th powers of elements of m and the ordinary p°th
power of m in R, and each would naturally be written the same way. We will write mppe for the set of pth
powers of elements of m, and m?* for the usual p°th power of the ideal m < R.

For example, if R = F, [z, y], then

0
mf = (2P Yy [a?, P ] = { D) oy}
=1

and .
mP = (xp’ xpilj% e xyp717 yp)FP[[xa y]] = { Z Ci,jxiyj}'
i+j=p

In general we have mppe € m?P .

Theorem 3.46. Let (R, m, k) be a complete local ring of equal characteristic p > 0. Let © be a p-basis for
k. Then for any lift T of © to R, there is a coefficient field of R containing T, namely K = (), oy RP[T].

Proof. Note that K is at least a subring of R that contains T
Note that RP'[T] = RP" - TI<P’l since each element t € T has t*" € RP". We will use the following

observation multiple times:
() RP[T] nmcw.

To verify it, write u € m as an RP"-linear combination of T1<P°]. Taking images of this linear combination
modulo m gives a kP -linear combination of ©[<P°] that is zero, so by the lemma, each coefficient is zero in

kP, and hence in the original combination, each coefficient is in m n RP € mppe € mP . Thus

Kom={|R[T]nm)c[]m =0.

Thus, K injects into k.
Now we show that the map K — k is surjective. We define a set theoretic function ¢ : kK — R such that
7o { is the identity on k as follows: Fix \ € k. Since k = kP"[0], for any e we can pick some r, € RP"[T]

that maps to A. Then 7,1 — . € m since their images coincide in k, and roq; — 7. € RP [T] n m < m?", so
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(re) is a Cauchy sequence in R. Let £(\) = lim, r.. To see that ¢ is well-defined, given (r.) with 7/, mapping
to A, re — 1., € RP'[T] nm < mP", so the difference converges to 0. The image of £()\) in k is A, since this is
true for each r..

Now we show that for any A and any n, £(\) € RP"[T]; this will show that ¢(\) € K so the map K — k
is surjective.

Given n, write A as an element of k?" ©l<P"l:
- " gH
A= Z e, 0%,
n

where g runs over all exponent tuples with each exponent bounded by p™. For every u and e, pick some

Cpe € RP°[T] such that ¢, . maps to ¢, in k, so (c,.) is a Cauchy sequence with limit ¢(c,). Let
We = Z cﬁlt”.
"
Then w, € RP* [T] and the w, = A mod m. Again by well-definedness of ¢, we have
limw, = £()).
On the other hand,

limw, = Z lim(cffe)t” = Zlim(cﬂye)pnt“ = zﬁ(cu)pnt“ e RP"[T]. O
p 1 1

Corollary 3.47. Let K be a perfect field (i.e., K has characteristic zero or K has characteristic p > 0 and
K = K?) and R be a complete local K-algebra. Then R has a coefficient field containing K.

Proof. In characteristic zero, since K is a subfield, there is a maximal subfield containing K which is
necessarily a coefficient field. In positive characteristic, K = (| K?° < ((RP" < RP'[T] for a p-basis T,

so K is contained in a coefficient field. O
Lecture of April 20, 2023

Theorem 3.48 (Cohen Structure Theorem: Main part). Let (R, m, k) be a complete local Noetherian ring
containing a field. Then R = k[x1,...,x,]/I for some ideal I. In particular, every complete local Noetherian

ring s a quotient of a regular local ring.

Proof. Letm = (ay,...,a,). Consider the homomorphism k[, ..., 2,] — Rinduced by map k[z1,...,z,] —
R mapping z; to a;. We claim that this is surjective. The image of (z) in R is contained in m, so R is
(x)-adically separated. Then since the image 1 generates R/(x)R as a k[x1,...,z,]/(z) vector space, 1

generates R as a k[z1,...,x,]-module. This means that the map is surjective. O

Theorem 3.49 (Cohen Structure Theorem: Regular rings). Let (R, m, k) be a complete regular local ring
containing a field. Then R = k[x1,...,x,].

Proof. By the main part of CST, write R = S/I for some I and some power series ring S. By the regular
hypothesis, a minimal generating set fi,..., f; for I has linearly independent images in n/n?, where n is
the ideal of the xs in S. Applying a suitable linear change of coordinates, we can rewrite f; = z; + ¢g; with
gi € n2. We claim that the map A = k[z;,1,...,2,] — R is an isomorphism. Set a to be the maximal ideal
of a. Then R is a-adically separated, since a maps into m. Also R/aR = % But the images of
(x1+9g1,...,xt + g¢) are linearly independent in the maximal ideal of kx1, ..., x:] modulo its square, so the

quotient is a regular ring of dimension zero, hence a field, so R/aR is generated by the class of 1. By Super
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NAK, R is generated by the image of 1, so this map is a surjection. But the dimension of A equals that of

R, and these are domains, so it is an isomorphism too. O
Optional Exercise 3.50. Let R be a Noetherian local ring. Then dim(R) = dim(R).
Hint: Show that R/m} = R/m% and use Hilbert functions.

Theorem 3.51 (Cohen Structure Theorem: Noether Normalization). Let (R, m, k) be a complete reqular
local ring containing a field. Then there exists a power series ring A = k[x1,...,2,] such that A< R is a

module-finite inclusion.

Proof. Let fi,..., fn be a system of parameters for R. Consider the map k[z1,...,2,] — R by sending
x; to f; and the induced map on completions A <> R. We claim that R is module-finite over the image
of this map. Indeed, first we note that the completion of R with respect to its maximal ideal agrees with
the completion of R as an A-module by restriction of scalars. Indeed, if n is the maximal ideal of A, we
have m™ € nR < m by definition of system of parameters, so large powers of m agree with large powers of
nin R (i.e., the topologies agree). In particular, R is n-separated. We also have R/nR is a finite length, so
finitely generated over A and hence over k. By Super NAK, R is a finitely generated A-module. But then
dim(R) = dim(A/ker(e)). On the other hand, dim(R) = n = dim(A), and since A is a domain, we must

have ker(a) = 0; i.e., « is injective. O

Remark 3.52. Recall that a local ring (R, m, k) that does not contain a field has mixed characteristic: the
characteristic of R is zero or a (proper) power of p, and the characteristic of k is p. In this case, instead
of a coefficient field, R contains a Cohen ring: a complete local domain V' with principal maximal ideal p
and residue field &, or a quotient V /pV for a Cohen ring. Every Cohen ring with the same residue field is

isomorphic. The remaining aspects of the structure theorems hold with only one minor change:

(1) Every complete local Noetherian ring of mixed characteristic is isomorphic to a quotient of a power
series ring over a Cohen ring with the same residue field as R.

(2) Every complete local Noetherian ring of mixed characteristic is a module-finite extension of a power
series ring over a Cohen ring with the same residue field as R.

(3) Every complete regular local Noetherian ring of mixed characteristic is isomorphic to a power series
ring over a Cohen ring or a quotient of a power series ring over a Cohen ring by a principal ideal

generated by an element of the form p — f for some f in the square of the maximal ideal.

4. RETURN TO JACOBIAN CRITERION

Proposition 4.1. Let (R,m,k) be a local ring of equal characteristic. Suppose that K € R is
o the prime field (Q or F,) of R,
e 7, or
e any perfect field contained in R.

Then the map

m d

@ =5 k®r QR|K
s injective.
Proof. We have seen that this happens whenever there is a K-algebra right inverse to the quotient map
R/m? —» R/m. If K € R, then K € R/m?, and since R/m? is artinian, it is complete. Thus, there is a
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coefficient field L for R/m? containing K. Thus, the map from Rm — L is a K-algebra right inverse to the

quotient map, and the conclusion follows. O

Lecture of April 25, 2023

Based on our earlier work, we have the following;:

Theorem 4.2. Let K be a perfect field and R = Kl[x1,...,2,]/I. Then for p € Spec(R) with preimage
q < S, the following are equivalent:

e R, is regular

e K — R, is essentially smooth

e Column jacobian on a minimal generating set is injective in k(p).

We would like to refine and extend this result in multiple ways. First, we would like to like to give a
criterion for regularity that is somewhat less dependent on p so we can compute the singular locus. Second,
recalling that smoothness is related to projectivity of the Kahler differentials, we want to understand this
criterion more specifically focused on the differentials. Third, we want to state a version of this that holds

even when K is not perfect.

4.1. Ideals of minors and free modules. Let R be a ring and A a an n x m matrix, so there is a map
of free modules
R™ 4 R™,
For 0 < t < min{m, n}, we define
I;(A) = ( t x ¢t minors of A ).

By convention, we also set I;(A) = 0 for ¢ > min{m,n}.
Note that, by Laplace expansion, I1(A) 2 I5(A) 2 I3(A) 2 ---. If R = K is a field, then

K if t <rank(A)

I(A) = .
0 if ¢t > rank(A)

Of course, over a general ring, any ideal can be the ideal of minor of a matrix.

For any prime p € Spec(R), we can think of A as a matrix over k(p) via the natural map R — x(p). Then
the rank of A over k(p) is at least ¢ if and only if I;(A)x(p) # 0, which happens if and only if I;(4) € p. In
particular,

{p € Spec(R) | rank,(y)(4) < t} = V(1,(4))

is closed; if p < q, then the rank can only go down.

Lemma 4.3 (Cauchy-Binet formula). Let R be a ring. Let A be an n x m matriz and B be an m x n matriz
with m = n. For a subset I < [m] of size n, write Ae ; to be the submatriz with columns indexed by I and
B, to be the submatriz with rows indexed by I. Then det(AB) = 1) 1j=n det(Ae,r) det(Bra).

Proof. Let aq,...,a, be the rows of A. We can think of det(AB) as a function Dg(ay,...,a,) that is

R-linear in each argument: indeed

cay + a ai ay

a2 a2 a2
row 1 of _ B |=(cay +a})B =ca1B +aiB = c-row 1 of .| B|+row1lof | B

)

2% Qp 2%
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and likewise for the other a;’s, so this follows by linearity of determinant in rows.

Likewise, the function >3;c(,,1 7=, det(Ae,r) det(Bre) = Dip(ar,...,an) linear in each argument: in
particular, this holds for each I for the same reason as above. Thus, if the formula holds whenever each a;
is a standard basis vector in R™, the formula holds in general by linearity. Moreover, if any standard vector
repeats in the a’s, then AB has a repeating row, and both sides are zero. Thus, we reduce to the case where
each row of A has exactly one 1 and all other entries 0. Both expressions also stay the same if we permute
the columns of A and rows of B simultaneously, so we can assume that A is an identity block followed by
zeroes. Then the product of AB is the matrix B’ consisting of the first n rows of B, so det(AB) = det(B’),
and the only nonzero term in >, (.1 71—y, det(Ae,r) det(Br,4) is where I = [n], and the value is det(B’). O

Lemma 4.4. Let R be a ring.

(1) If A, B are matrices, then I;(AB) < I,(A)I(B)(< I;(A) n I(B)).
(2) If A is a matriz and U and V' are invertible matrices, then I,(UA) = I,(A) = L;,(AV).

Proof. For the first statement, given a ¢ x ¢t minor of AB, we can replace A by the rows occurring in the
given minor and B by the columns occurring in that minor. The statement then follows from Cauchy-Binet.

For the second, by the first part we have
L(UA) € I(A) = L(UT'UA) € I,(UA)
and similarly for V. |

Proposition 4.5. Let (R,m) be a local ring. Given an n x m matriz A, the cokernel of A is free of rank r
if and only if I(,_ry(A) = R and I(,_y11(A) = 0.

Proof. By the lemma, multiplying on the left and right by invertible matrices (and in particular, row and
column operations) does not affect the ideals of minors; it also does not affect the cokernel up to isomorphism.
If A has a unit as an entry, applying row and column operations, without loss of generality it is the top

left entry, and all other entries in the same row and column are zero. Repeating this process, we reduce to
I 0
the case A = 0 B with I the k x k identity matrix and B a matrix in m. Then the cokernel of A is

isomorphic to that of B, while
R ifj<k
I;(A) = o
Ii_x(B) ifj>k
If M is free, then B = 0: writing
R+ L gk v 0
since the entries of B are in m, the generators of R"~* are linearly independent modulo m, hence a minimal
generating set for M, but then they must be a free basis, so B = 0. Then, lining up the numbers, k = n —r.
In that case, I;(A) = R for j <k and = 0 for j > k and the conclusion holds.
On the other hand, if the conditions on minors hold for some value of 7, then the first index where the
ideal of minors is proper must agree with & + 1, so k = n — r, and the first proper such ideal is zero, so
I;(B) = 0 and hence B = 0. We then get a free cokernel of rank r. O

4.2. Jacobian criterion for singular locus over perfect fields.

Lemma 4.6. Let K be a field and S = K|x1,...,z,] be a polynomial ring. Let I = (f1,...,f;) S S be an
ideal and a 2 I a prime ideal. If ht(a) = h, then In 1 (JT (f1,..., f:)) = 0 in Sy/aS,.
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Proof. Let I < a € q with a of height h. Then S, is regular, so there exist ¢1,...,9, € S with aS, =
(91,---,9n)Sa. Now, since 1.5, € aS,, so we can write f; = Zj TijGj-

Recall that the universal derivation dg_ (i : Sa — g,k can be identified with the map
ds
— Y —d
S Z dl’k Tk,
k
and that the coordinates are the entries of the column Jacobian. We have
ds,\x(fi) = dSa|K(Z Tij95) = Zri,jdsu\K(gj) + Zgjdsau((m,j).
J J J
The entries of the second sum are in aSy, so in Sq/aS, we can write JZ (f1,..., fi) = [rij]1J (g1, -, 9n)-

But then the vanishing of the h + 1 minors is clear. ]
Lecture of April 27, 2023

Lemma 4.7. Let (S,n) be a regular local ring, and I = S. The following are equivalent:

(1) S/I is regular

(2) The map X RN oz 18 injective.

(3) The map n has rank (taken in k(n)) equal to the height of I.
Proof. We have seen the equivalence of the first two earlier. If S/I is regular, then the rank of n equals the
minimal number of generators of I, and each minimal generator decreases the dimension by one, so the height
equals the minimal number of generators, thus rank of 1 equals height of I. Conversely, if the rank of n equals
the height of I, take a set of minimal generators whose images form a basis of the image of 1 and let J be the
ideal they generate. Then dim(S/J) is regular, hence a domain, and dim(S/J) = dim(S) —ht(I) = dim(S/I),
so I/J =0, and hence S/I is regular. O

Theorem 4.8. Let K be a perfect field and R = K|x1,...,2,]/I. Then for p € Spec(R) with preimage
q < S, the following are equivalent:

o R, is regular

o The rank of the Jacobian matriz for I in rk(p) is ht1.S.

e Qp, |k 1 free of rank n —htlSy.

Proof. Set h = htlS;.

We have maps
Lo, 95 4
ql4 925,
with the second injective, so the rank of 1 equals that of d o 7. Applying the lemma to Sy, R, is regular if

r(q) @k Qs|x

and only if the rank in k(p) of d o n is the height of htI;. This map is given in matrix form by the column
Jacobian on the f’s, showing the equivalence of the first two.

For the last equivalence, recall that Qg i is the cokernel of the Jacobian considered as a map of R,
modules. If R, is regular, then IS is prime of height h, and by the lemma, I;,11(J7 (f)) = 0in Sq/1Sq = Ry,
while I, (JT(f)) € (p) by the second bullet, so QR, |k is free of rank n — h. On the other hand, if Qg |k is
free of rank n — h, then I,(JT(f)) = Ry and I,11(JT(f)) = 0 by the linear algebra lemma, so the rank of
the Jacobian in k(p) must be exactly h. O

Remark 4.9. Recall that the height of I equals min{ht p | p 2 I minimal prime}. If I < g, then the height
of ISy equals min{ht p | p 2 I minimal prime with p < q}.
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Given a primary decomposition I = Q1 N -+ Q¢ with Q1,...,Qs S q and Qs41,...,Q¢ € q, we have
ISqnS=Qin - nQs. Set R = S/(ISq N S); then RFis a finitely generated K-algebra with the same
localization at p and consisting only of the components contained in p. In particular, the minimal primes of
R, are in bijection with those of RP. Then the number n — ht1S; equals the dimension of RP. Thus, R, is
regular if and only if Qp, | is free of rank dim(ﬁp ).

For example, take S = K[z,y,z], I = (vy,zz), and R = S/I. We have V(I) = V(z) u V(y, z) is the
union of a plane and a line. Then ht(I) = 1 due to the minimal prime (x). However, for m = (x —1,y, 2), we
have ht(ISy) = 2, since (x) blows up and (y, z) is the unique minimal prime over I in the localization. This
maximal ideal m corresponds to a point in the line that is not on the plane. We can realize Ry = (S/(y, 2))m;

in our notation, B™ = 5/(y, 2).
For a ring R, we define the singular locus of R to be
Sing(R) = {p € Spec(R) | R, is not regular}.

Corollary 4.10. Let K be a perfect field and R = K[z1,...,x,]/I. Suppose that the height of each minimal
prime of I is h. Let I = (f1,...,ft). Then,

Sing(R) = V(In(J" (f1,- -+, f1)))-

Proof. By hypothesis, the height of I; equals h for any q 2 I in S. By the earlier lemma, the rank of the
Jacobian matrix for I in x(p) is at most h (since this is the case modulo a smaller prime. Thus, the rank of

the Jacobian matrix for I in k(p) equals h if and only if the localization is regular. O

Example 4.11. The hypothesis on equal heights is necessary, though we need a slightly more interesting
example than the one we considered above. Let K = C and R = K|[z,y, z]/(2?> — z,7yz). Then the height
of the ideal I = (2? — z,xyz) is 1, since z is a minimal prime, but I; of the Jacobian contains 2 — 1, which
generates the unit ideal in the quotient. But, localizing at (v — 1,y,2) we get K[z,y, z](z—1,.2)/(z — 1,y2),
which is not regular.

Geometrically, R is the coordinate ring of the disjoint union of the plane x = 0 and the crossing pair of
lines z = 1,y = 0 and z = 1,z = 0. The plane tells us to take 1 x 1 minors, but the singularity is taking

place in a component of codimension 2.
Lecture of May 1, 2023

Corollary 4.12. Let K be a perfect field and R be essentially algebra finite over K. Then the singular locus
of R is a closed subset of Spec(R).

Proof. First, we reduce to the case R is algebra-finite over K, since Spec(W~'R) can be identified with
a subspace of Spec(R), and the prime localizations of W~!R are isomorphic to the corresponding prime
localizations of R.

Write R = K[z1,...,2,]/I. Take a minimal primary decomposition I = Q1 N N @Q: N Qi NN Q)

with @; minimal components and the other embedded. We claim that

Sing(R) = | JV(QiR+ Q;R) u | ] V(QkR + Tnyq,)(J” (gens of Qx)R))
i<j k=1
= V([ [(QiR +Q;R) - [ [(QkR + Tusqu) (T (gens of Qx))R))).

1<j k=1
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For the containment (2), we show that R, regular implies that p is not in the right hand side. Suppose
that R, is regular. Then R, = (S/I)q is Sq mod the primary components contained in q; since this is a
domain, this intersection must be just a single prime; in particular, p does not contain the image of @; + @;
for and i < j. Then, R, = (5/Q;)q for some 4, and this is regular, so p must not contain the h; minors of
the Jacobian of a generating set of @);, by the case where all components have the same height.

Conversely, if p is not in the right hand side, then p must contain only one minimal component @;,
and it cannot contain the h; minors of the corresponding Jacobian, so, using the same isomorphism, R, is

regular. (]

It turns out that free of any rank implies free of the correct rank and hence regular under additional

hypotheses.

Lemma 4.13. Let K be a perfect field of characteristic p, and L be a finitely generated field extension of
K. Then pdeg(L) = pdegy (L) = trdegy (L).

Proof. To see the first equality, note that L? = KP(LP) = K(LP). For the second, take a transcendence basis
Z1,...,2¢ for L over K. Then L is finitely generated and algebraic over K (x1,...,x¢), so finite. Then, using
the homework, we have pdeg(K(x1,...,2;)) = pdeg(K) +t =t and pdeg(L) = pdeg(K(x1,...,2)). O

Theorem 4.14. Let K be a perfect field and R = K[z1,...,x,]/I. Suppose that either R has characteristic
zero or is reduced. Then for p € Spec(R), Ry is reqular if and only if Qg |k is free.

Proof. By the previous theorem, R is regular if and only if 2p |k is free of rank n — ht/Sy, where q is the
preimage of p in the polynomial ring. Removing the minimal components of R that are not contained in p
(i.e., replacing R by dim(RP)), we can assume that dim(R) = n — ht7Sq and that every minimal prime of
R is contained in p. Thus, we just need to show that if Qp |k is free, then its rank is dim(R). Let a be
a minimal prime of R with dim(R) = dim(R/a); by the reduction above, this is contained in p. From the

second fundamental sequence, we have

alRqy 4
@R, k() ®r, Qr, |k = Qi(a)x — 0

We claim that €,k is a vector space of rank dim(R). In characteristic zero, this dimension is the size
of a transcendence basis for k(a) over K, which is dim(R/a) = dim(R) by Noether normalization. In positive
characteristic, by the lemma, the rank is given by pdegy (k(a)) = trdegy (x(a)) by the lemma, which is
dim(R) for the same reasons as the characteristic zero case. Thus, it suffices to show that the map d in the
sequence above is the zero map.

If R is reduced, then aR, = 0 since this the unique minimal prime of R, hence its nilradical, so the map
d is zero.

If the characteristic of K is zero, then every element of aR, is nilpotent in R,. Let f* =0 but /=% # 0.
Applying

R, % Qr. K
we get tf*71df = 0in Qg |k, so f*71df = 0. Since Qp |k = (Qg, |k)a is free, and df is annihilated by some
nonzero element, df € aQp |k, so df =0 in x(a) g, QR, k- Thus, the desired map is zero. O

4.3. Jacobian criteria over arbitrary fields.

Example 4.15. Let K = F(t), Ry = K[z]/(a? — t), and Ry = KJ[z]/(zP). For both rings, the Jacobian
ideal would say the singular locus is V'(0). The first is regular but the second is not. However, if we could

differentiate by ¢, then the 1 x 1 minors of the Jacobian matrix give the expected result.
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Lecture of May 4, 2023

Let K be a field and R = K|[z1,...,2,]. Let Ko € K be a subfield. Let T' = {k;} be a transcendence
basis for K/Kj if characteristic 0 or a p-basis for K/Kj if characteristic p.

Let’s recall our earlier construction of derivations of K over K. In characteristic zero, we obtain deriva-
tions by taking derivatives with respect to the transcendence basis on the purely transcendental extension
Ko{k;} and extending uniquely by separability. In characteristic p, we have derivations given by taking the
derivatives with respect to a p-basis as discussed earlier. In either case, these are the dual basis elements to
dk;. Let’s write dikj for these derivations on K. Then each ﬁj extends to a Ky-linear derivation on R by
acting on each coefficient of f considered as a polynomial; by abuse of notation, we will use the same name

for these extensions.

Proposition 4.16. Let R = K[z1,...,2,] and Ky < K be a field. Let {k;} be a transcendence basis or
p-basis of K /Ky, and {dikj} be the extensions of a dual basis to R by acting on coefficients. Then

R

d(r) —— >, d%dxi + 25 %"jdkj

1s a universal derivation.

Proof. Let’s just show the universal property. Given a Kjy-linear derivation from ¢ : R — M, since our
candidate Q is free on dx; and dk;, there is a unique R-linear map « such that a(dz;) = d(z;) and «(dk;) =
0(k;). Uniqueness of « is clear, since 3d = 0 implies §(dz;) = 0(x;) and S(dk;) = 0(k;), so [ agrees with «
on a generating set and 5 = a. However, we need to check that ad(r) = d(r) for all r € R. It suffices to show
any Ko-linear derivation is uniquely determined by its values on x; and kj; i.e., that a Ky-linear derivation
that vanishes on z; and k; is the zero derivation. Suppose d(z;) = d(k;) = 0 for all 4, j. Consider 0|x. Since

d(kj) = 0 for all j and Qg |k, is generated by dk;, we must have 0|k = 0, so 0 is K-linear. But then the x;’s

generate R as a K-algebra, so ¢ = 0, as desired. ]
Given R = K(z1,...,2,], Ko € K a field, and {k;} elements forming a tr or p basis, and a sequence of
elements f1,..., f: € R, we define the extended (column) Jacobian to be the matrix
[ dfy .. dfe ]
xry 1
a0 dfe
Tn T
dafy . df
dk: dky

We allow the possibility of an infinitely tall matrix in the case of an infinite transcendence/p-basis.

We record the discussion above as a lemma.

Lemma 4.17. Given R = K[x1,...,2,], Ko € K a field, and {k;} elements forming a tr or p basis, and a
sequence of elements f1,..., fr € R, ith column of the extended Jacobian matriz is the vector of coordinates
of dfi in Qg |, in the basis dr1, ..., dx,, {dk;}.

Theorem 4.18. Let K be a field and R = Klx1,...,2,]|/I. Let Ky € K be a perfect field. Then, for
p € Spec(R), the following are equivalent:

e R, is regular
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o The rank of extended column Jacobian for I over k(p) is the height of 1S,.
Proof. This is entirely analogous to that in the perfect case, noting that the map d is injective. O

Example 4.19. Let K = F,(t), S = K[z], and R = S/(aP —t). K contains the perfect field K, and there

is a derivation of K over K| given by %. Then the extended Jacobian matrix for R is
0
-1

Corollary 4.20. Let K be a field and R = K[z, ...,x,])/I. Suppose that the height of each minimal prime
of I is h. Let Ky € K be a perfect field. Then, the singular locus of R is the ideal of h x h minors of an

extended column Jacobian matriz on a generating set for I.

aligning with the conclusion that R is regular.

Proof. The proof follows the same lines as in the case Kg = K: since K is perfect, the universal differential
over Ky is injective, so R, is regular if and only if the rank of the extended Jacobian at p equals the height
of IS. |

Corollary 4.21. Let R be essentially of finite type over a field K. Then the singular locus of R is closed.
Proof. Follows as in the perfect case. ]

Remark 4.22. Let R be a ring. A subset X < Spec(R) is specialization closed if for any p € X and q 2 p,
g€ X. A closed subset of Spec(R) is necessarily specialization closed, but the converse is false. For example,
in Spec(Z), the set of maximal ideals is specialization closed but not closed: any closed subset V(I) = V((n))
if not containing (0) must have n # 0, and n has finitely many prime divisors, so V((n)) is finite.

It is a theorem that the singular locus of any Noetherian ring is specialization closed. However. ..
4.4. A Noetherian ring with nonclosed singular locus.
Theorem 4.23. There is a Noetherian domain of dimension one whose singular locus is not closed.
Let T = C[x1,x2,...] be a polynomial ring in countably many variables. Let S € T be the subring
S =Clz?,23, 22, 23,...].

Set p; = (27, z3) for each 4, and let W = S\ |J,cy Pi- Note that W = [,.(S \ p;) is an intersection of
multiplicatively closed sets, so W is multiplicatively closed. We will show that R = W15 is a Noetherian
domain for which Sing(R) is not closed.

The hard part is showing this ring is Noetherian. We’ll use a couple of lemmas.

Lemma 4.24. Let R be a ring. Suppose that Ry, is Noetherian for every mazimal ideal m and every nonzero

element of R is contained in at most finitely many mazimal ideals. Then R is Noetherian.

Proof. Let I € Is € I3 < --- be an ascending chain of ideals; without loss of generality, I is nonzero. By
hypothesis, Vinax(I1) is finite, and Vipax(l;) 2 Vinax(Li+1) for every i by definition. A descending chain of
finite sets stabilizes, so X = Vi,ax(I;) stabilizes. Then for each m € X, the chain

(I)m € (I2)m S (I3)m S - - -

stabilizes. In particular, there is some t such that (I;)m = ([;4+1)m for all ¢ = ¢t and all maximal ideals
containing I; 1. Thus, Supp(Z;+1/1;) contains no maximal ideals, hence is empty, so I; = I, for all i > ¢;

i.e., the chain stabilizes. |
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Lecture of May 9, 2023
The next lemma says that the conclusion of prime avoidance holds for the collection of p; (which is infinite,

so the usual hypothesis does not).
Lemma 4.25. Let S, p; be as above. Then for any ideal I of S, if I < |J,cnPi, then I < p; for some i.
Proof. If I = 0 this is clear, so suppose I # 0, that I < |,y pi- For s € S, set

v(s):={i| fep;}={i|x; divides f in T}.

Since s involves finitely many variables, v(s) is finite for each nonzero s € S. Our hypothesis translates to
saying v(f) is nonempty for each f € I.

We claim that for any f, g € I, there is some h € I with v(h) € v(f) nv(g). Namely, let k be larger than
the index of any variable in f or g, and ¢ be an integer greater than the degree of f and set h = f + x%g.
Then f and z} ¢ have no monomials in common (since the degrees of all the monomials in zf g are at least ¢
and the degree of the monomials in f are all less than ¢) so none can cancel from each other. In particular,
if 24 divides h in T', then z, divides both f and 2z g in T} i.e., v(h) € v(f) N v(g) as claimed.

Thus, fixing some nonzero f € I, for every g € I, v(f) mn v(g) is nonempty. That means that every g € I
is in some p; for ¢ € v(f), so I < UiEU(f) p;, which is a finite union of primes. By the usual version of prime

avoidance, I < p; for some 1. O

It follows that the maximal ideals of R are p; R. Indeed, the prime ideals of R correspond to ideals q of
S that do not intersect W, so are contained in | J; p;, and thus by the lemma, are contained in some p;.
Now Rp,r = Sp,. Set L; := K({z; | j #1}) = frac(K[w?,x? | § #14]). We have

Sp. = (S~ p) 'S = (S p) M (Kladia? | §# ]~ (0)7'S = (5~ pi) ' Lifa?, o).

j i
We claim that L;[zZ,23]y,, = Sp,. Indeed, (S~ p;)~t < Li[2?, 23] \ (p;L;), so

(S ~ pi)_lLi[mzza J:f] = Li[x?)xg’]mlw"

i

On the other hand, any element of L;[z?, x}] \ p;L; can be written as a fraction with numerator in S ~\ p;,
so the equality holds.

For each ¢, this is a Noetherian ring of dimension one that is not regular. From the first lemma, and the
observation in the proof of the second lemma that every element of S is in at most finitely many p;, we see
that R is Noetherian. thus R is a one-dimensional Noetherian domain. The localization at (0) is a field,
hence regular, and every other prime is maximal, so the singular locus of R is the (infinite) set of its maximal

ideals. But this set has infinitely many minimal elements, so it is not closed. (Il

5. P-DERIVATIONS AND JACOBIAN CRITERIA IN MIXED CHARACTERSTIC

5.1. P-derivations. We end by describing some recent results characterizing singularities in mixed charac-

teristic. First, we discuss the basic examples of rings of mixed characteristic.

Example 5.1. Let p be a prime integer. The ring Z,) (consisting of fractions with denominator coprime
to p) is a local ring of mixed characteristic: its characteristic is zero and its residue field is F,,. Its maximal
ideal is generated by p. This is a one-dimensional regular Noetherian local domain.

The completion of this ring is the ring Z/(\p) of p-adic integers. Any element can be realized as a consistent
sequence of residue classes modulo p™. Given such a sequence, for a,, € Z/p™, take the unique representative

between 0 and p™ — 1. Then a1 — a,, = b,p" for some unique b, € {0,1,...,p — 1}. Thus, every element
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of Z%(\p) is represented by a unique series of the form Zf:o b,p™ with 0 < b, < p. The arithmetic of series
represented like so is strange: one as ((p—1)+ (p—1)p+ (p—1)p? +---) + 1 = 0! This is a complete local

one-dimensional regular Noetherian ring with maximal ideal (p).

Definition 5.2. Let R be a ring and p a prime integer. Let S be an R-algebra. A p-derivation from R to
S is a function 0 : R — S such that

(1) 6(1) =0

(2) o(z + y) =6(z) +6(y) — Cp(z,y)

(3) d(zy) = aPd(y) + yPo(z) + pd(x)d(y),
where Cy(z,y) = P} (;)x yPh

Note that Cj,(z,y) is a polynomial expression with integer coefficients, since p|(?) for such i. For example,
Co(x,y) = xy and Cs(z,y) = 2%y + zy>. Note also that every term of Cp(z,y) is a multiple of z and y.
We note that the target of a p-derivation must be an R-algebra and not just an R-module, since one needs

to make sense of 6(z)d(y).

Lemma 5.3. Let § : R — S be a p-derivation.
(1) 6(0)=0

) 5 - —5(x) ifp#2

—6(z) + 22 ifp= 2
Proof. (1) We have
0=0(1) =0(14+0)=0(1)+(0)+ Cp(1,0) =0+ 06(0) + 0

(2) We have
0=10(0) =0d(z + (—x)) =6(z) + 6(—x) — Cp(x, —x).
We have Cy(z,—2) = x(—2) = —2? and for p odd,

- p—1/ qyi(p
(z,—x) Z :vpi:xp w:(} O

Example 5.4. On Z, the function

from Z to itself is a p-derivation. Indeed, 6(1) = 0,

(m+n)—(m+n)P m+n—mP—nP— Y7 (B)mint~

d(m+n) = = = =d(m) +d(n) — Cp(m,n),
p p
and
Pr — mPnP + nPm — mPnP — mPn — nP PP _ P
mpé(n)+np5(m)+p§(m)5(n):mn mPnP 4+ nPm — mPn +p(mn mPn 2n m+mPnP _ mn (mn) — §(mn).
b p p

For example, for p = 2, §(6) = 6_262 = —15.
This is the unique p-derivation on Z (for p fixed), since the value at 1 determines all values on N by the
sum rule and induction, and the values at 0 and negative integers are determined by the lemma above.

Suppose that n is a multiple of p and write n = up® with (u,p) = 1. Then

a PPa
O(up”) = - pu P —upt (1= wr1pee7)
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is divisible by exactly one less power of p. In this sense, this function is like a derivative by p.

Remark 5.5. If § : R — S is any p-derivation, then the restriction of ¢ to the prime ring (image of Z) is

again a p-derivation. If R has characteristic p, so p = 0 in R, then
0= 5(0) = 6(p) = 1 —p*

in S, but S must also have characteristic p, so 0 = 1 in S; a contradiction. That is, a ring of characteristic

p admits no p-derivations.
The following is where p-derivations come from.

Proposition 5.6. Let R be a ring, p be a prime, and S be an R-algebra. If 6 : R — S is a p-derivation then
the function ® : R — S given by ®(r) = rP + pd(r) is a ring homomomrphism, and the converse holds if p

is a monzerodivisor on S.

Proof. Suppose that § is a p-derivation. Then,
e Since §(1) = 0, we have ®(1) =17 + pi(1) = 1.
e Since 0(z +y) = 0(z) + d(y) — Cp(x,y), we have

(z+y) = (x+y) +pd(z+y) = 2P +y" +pCy(x,y)+pd(2)+pd(y) —pCp(z,y) = z+pd(x)+yP+pd(y) = B(x)+D(y).
e Since §(zy) = zPo(y) + yPo(z) + pd(x)d(y), we have

®(zy) = (xy)” + pd(zy) = 2Py? + paPd(y) + py?d(x) + p*6(2)(y) = (¥ + pd(2))(y? + pd(y)) = ®(z)P(y).

The converses are similar, noting that one ends up with terms of the form p? = 0 and needs that p is a

nonzerodivisor to conclude ? = 0. O
Example 5.7. Let R = Z,[x1,...,7,]. Then the function 0 : R — R given by

.f(m];?"'?x'zr}z)_f(xlr"axn)p
p
is a p-derivation, since ®(f(z1,...,2,)) = f(z1,...,20)P + pd(f(21,...,2,)) = f(2f,...,2P) is a ring

5(f(a:1, e ,J}n)) =

homomorphism.
For example, for p = 3, the function defined above sends 3 — 2zy to
3— 2%y — (3 —2xy)® 3 — 27+ bday — 3627y — 22°y° + 8a°y°
3 3
Example 5.8. We can generalize the above as follows: let A be a ring with a p-derivation §, and R =
Alxx |A € A]. Assume that p is a nonzerodivisor on A. Set ¢(a) = a? + pd(a), and & : R - R by ®|4 = ¢

and ®(z)) = 25. Then ®(f) = f? mod p since this is a ring endomorphism of R that is zero on each xy

= 8 + 18zy — 1222y + 22315,

and on A. Setting

we get a p-derivation on R extending 4.
Lecture of May 11, 2023
Definition 5.9. A §-ring is a pair (R, ) where § is a p-derivation on R.

5.2. Perivations. The target of a p-derivation is an algebra and not a module, so we can’t make sense of a
universal target module akin to the module of differentials. However, if p = 0 in the target, then the product

rule simplifies in a useful way.
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Definition 5.10. Let R be a ring and p be a prime integer. Let M be an R-module with pM = 0. A map
a: R — M is a perivation if
(1) a(1) =0
(2) a(z +y) = a(z) + aly) + Cp(z,y)a(p)
(3) a(zy) = 2Pa(y) + yPa(x)
If (4,6) is a §-ring and R is an A-algebra, we say that « is a perivation over (4, 9) if also a(a) = a(p)d(a)
for all a € A.

Remark 5.11. If M is an R-algebra with pM = 0, then a p-derivation from R to M is the same thing as a

perivation with a(p) = 1.

Remark 5.12. A perivation with «(p) = 0 looks similar to a derivation; there are just pth powers on the
product rule.

To make this line up, let M be an R/pR module, and let Fg/,r be the Frobenius map on R/pR — R/pR.
Let FR/pR*(M) be the R/pR-module obtained by restriction of scalars through F': this is identical to M as
a set, but an element of r sends m to rPm instead. The function « : R/pR — M satisfies

o oz +y) = az) +a(y)
o a(zy) = aPa(y) + yPo(z)
if and only if the same function a : R/pR — Fpy,r, (M) is a derivation: the first condition is additivity, and

writing » for the Fr/,p, (M) action, the second translates to

alay) = ealy) + ya(z) = 2 * aly) + y * ala).

Furthermore, if o : R — M with pM = 0 satisfies the perivation axioms with a(p) = 0, then « is additive
and hence a(pR) € pM = 0, so « factors through R/pR, and the map R — R/pR — FR/pR*(M) is a
derivation; conversely if R — Fgj,p, (M) is a derivation, it is additive so it factors through pR and we
again get a perivation with a(p) = 0. Thus, a perivation with a(p) = 0 is the same thing as a derivation
a:R— FR/pR*(M). We call such a map a derivation of Frobenius.

The “over (A,0)” condition for a derivation of Frobenius considered as a perivation is equivalent to

a(a) = 0 for all a € A, which is equivalent to A-linear.

Example 5.13. Let A be a ring in which p is not a unit (so A/pA # 0) and R = A[z]. Then the map
0:R— R/pR, 0(r) = (d—;)p is a derivation of Frobenius: we have

d
o(rs) = (dg;s))p = (rjl—; + s%)p =1P0(s) + sPo(r).

Remark 5.14. Let R be a ring of characteristic p and M be an R-module (which necessarily satisfies pM = 0).

If « is a perivation from R to M, then a(p) = a(0) = 0, so every perivation is a derivation of Frobenius.

Lemma 5.15. Let R be a ring and p be a prime integer. Let M be an R-modules with pM = 0.
(1) If a,B: R — M are perivations, then so is a + f3.
(2) If a: R — M s a perivation, and r € R, then ra is a perivation.
(3) If a: R — M is a perivation, and vy : M — N is R-linear, then vya is a perivation.
(4) If a: R — M is a perivation, and ¢ : S — R is a ring homomorphism, then ai) is a perivation.
Likewise for perivations over (A, ).
In particular, the set of perivations into a module is itself a module, denoted Pergr(M). The set of

perivations over (A,0) is a module, denoted Pergja,5)(M).
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Definition 5.16. Let R be a ring and p be a prime integer. A universal perivation for R is a perivation
dp : R — O r such that for any perivation a : R — M, there is a unique R/pR-module homomorphism
(~2R 9, M such that o = 6d.

We call the target module of a universal perivation a universal perivation module and denote it by O R

Likewise for perivations over (A, d), we denote a universal perivation over (4, d) by d R|(A,s) and the universal

perivation module over (A,d) by QR‘(A,C;).

Theorem 5.17. For any ring R, there exists a universal perivation dp : R — QR, and given any other

ungversal perivation dy : R — ', there is a unique isomorphism 6 making the diagram commute:

R G,

I
\ |6
dR Y
o/
QR

Likewise for perivations over (A,Jd).

Remark 5.18. If p is a unit in R, then Qp = 0 (and likewise over and (4, 4)), since any R-module with
pM = 0 is the zero module.

This construction almost coincides with the Kahler differential construction in positive characteristic.

Remark 5.19. Let R % S be a homomorphism of rings. We recall for any R-module M and S-module N
that there is an isomorphism

Homg(¢* (M), N) — Hompg(M, ¢ (N))
0+ fon

where 7 is the map M — ¢*(M).
Now, if R has characteristic p > 0, consider the map R L5, R. For any R-modules M and N we get an
isomorphism

=
*

Homp(F3(M), N) — Homp(M, Fry(N))
61 Gon

12

where 7 is the map M — Fr*(M).

Proposition 5.20. Let (A,0) be a 0-ring. Let R be an A-algebra with pR = 0. Then KNZR‘(A@ = F3(QRa)
with universal periation d = nod.
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Proof. We know that any perivation is an A-linear derivation of Frobenius. Consider the diagram

Qrja FE(Qpa)
dRr|a [ \
| \
/ \ \
R | B 10
\ \
\ ey |

Since « with target Fr, (M) is a derivation, there is a unique R-linear 8 making the diagram commute. Then
by extension of scalars, there is a unique R-linear ¢ making the diagram commute. Thus ndg 4 satisfies the

universal property. O

Theorem 5.21. Let (A,d) be a 6-ring and R = A[zy | A € A]. Then the universal perivation module over
A, Qpja,s), is a free R/pR module with basis {dxy | e A} U {dp}, and the universal perivation is given by

- . dr -
drj(a,s)(r) = A(r)dp + 2 (E)pdfﬂm
Aea A

where A is some extension of 0 to R (which exists as discussed above).
In particular, for R = Z,) [z1,...,2,], the universal perivation module is free on Jp, dzy,...,dz, and the

universal perivation is

fa?) — f(@)P - df \ps
[ #dp + ;(d%)Pdmi.
Proof. This is a sum of perivations, hence a perivation. Given «, we must have 6(dz;) = a(z;) and 6(dp) =
a(p), and since Jp, Jxl, ey dz,, are a free basis, there is a unique map [ satisfying this, so if 0 exists, we
must have 0 = 5. For this map, we have a and 5o d are two perivations that agree on p and the z;’s. But it
follows from the sum and product rule that a perivation is determined by its values on this set, so « = B o a?;
i.e., 8 = 8 makes the diagram commute, showing the universal property.

The unique iso statement follows exactly as in the case of differentials. O

Theorem 5.22 (Second fundamental sequence). Let (A,d) be a d-ring, and R 28 = R/I be a map of

A-algebras. Then there is an exact sequence
d" ~ ~
Fsps(I/(I%,pI)) = S ®r Qgj(a.5) = Lsja.s) — 0-
Furthermore, if A/pA is a perfect field and I is a mazimal ideal containing p, the first map is injective.

Definition 5.23. Let (A, ) be a §-ring and S = A[z1,...,z,]. Let A be a p-derivation on S extending 4.

For a sequence of elements f1,..., f; € S, we define the mized (column) Jacobian matriz to be
Alfr) - Alf)
T (1o f) = ((%)P (g
(%)p (%)p

Theorem 5.24. Let (A,0) be a d-ring and S = Alxy,...,x,]. Let A be a p-derivation on S extending 9.
Let I = (f1,...,ft) and R = S/I. Let q be a prime containing I, and let p = qR. Then QRP|(A75) is the
R, /pR,-module with presentation matriz jT(fl, ces ft)-



66 MATH 918 LECTURE NOTES, SPRING 2023

Sketch: Follows from the second fundamental sequence + universal perivation modules localize. O

Theorem 5.25. Let S = Z[x1,...,2,]. Let R = S/I, with I = (f1,...,ft), let p be a prime ideal of R
containing p, and q the preimage of p in S. The following are equivalent:

(1) Ry is regular

(2) Qg, is free of rank h :=n —ht(1S,)

() 2 LT (1, 1)),

Example 5.26. Let R = Z[¢/n] with n squarefree (and not equal to 0,1). Let us determine which of these
are regular using the theorem. We have R = Z[z]/(z — n), using that n? ¢ Z.
Now, the set of singular primes containing p is Vg (p, §(z* — n), 3z2) (from the 1 x 1 minors of the mixed
Jacobian), where 0 is a p-derivation on Z[x]. Let’s simplify this ideal up to radical.
We compute
23 —n — (23 —n)P

§(z® —n) = ’ = §(—n) — Cp(23, —n)

Since x3

=n in R, we have

§(z® —n) = 5(—n) — Cy(n, —n).
If p # 2, then §(—n) = —d(n) and Cp(n, —n) = 0, so §(x® —n) = —d(n); if p = 2, then 6(—n) = —d(n) + n?
and Cp(n, —n) = —n?, so §(—n) = —§(n) +2n% = —4(n) mod p = 2. So the set of singular primes containing
p is Vg(p, d(n), 322).

If p # 3, then this is Vg(p,d(n),2?) = Vg(p,d(n),xz) = Vg(p,d6(n),n, ), using the defining equation.
If p{n, then (p,n) = 1 and this is empty. If p | n, by squarefree hypothesis, p? { n, but by last time’s
computation, ptd(n), so (p,d(n)) =1, and this is empty again.

If p = 3, then this is Vg(3,0(n)). If 3| d(n), then this is just Vr(3) = {(3,1 + ¥/n)}; if 31 d(n), then
(3,(n)) = 1 and this is empty.

Observe that §(9k) = 935(k) + k35(9) + 36(k)d(9) is a multiple of 3, since §(9) is, and then 6(a + 9k) =
d(a) + 6(9k) + Cs(a, 9k) is congruent to d(a) modulo 3. We then compute for i =0, ...,8,

n |4 -3 2 -1 01 2 3 4
Sn)[20 8 2 0 00 -2 -8 -20
Thus, §(n) is only a multiple of 3 if n = £1 (or 0) modulo 9.
In particular, Z[+/35] and Z[{/37] are not regular, whereas Z[/39], Z[v/41], and Z[+/43] are.

6. CHARACTERIZATION OF UNRAMIFIED, ETALE, AND SMOOTH MORPHISMS

6.1. Grothendieck’s definition.

Theorem 6.1. Let A% R be a map of rings. Consider a diagrams of solid maps of the form

R—1o T/
N
¢ N
N
Q
A——T
of maps of A-algebras with J < T is an ideal with J?> = 0. Then the map A — R is

(1) formally unramified if and only if, for any such diagram, there is at most one dotted map making

the diagram commute;
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(2) formally étale if and only if, for any such diagram, there is exactly one dotted map making the
diagram commute;
(3) formally smooth if and only if, for any such diagram, there is at least one dotted map making the

diagram commute.

Proof. Let R = A[X]/I for some polynomial ring A[X]. Given a diagram as above, we have a diagram of

the form
R—1s T/

q N\
AN

A——T
We have an A-algebra homomorphism ¢ o ¢ : A[X] — T'/J. Let ty € T be an arbitrary set of preimages
in T of (¢ 0q)(xy). Define 9y : A[X] — T by 9g(zs) = tx. Observe that miho(I) = 0 so 1o(I) < J, and
Yo(I?) < J? = 0, hence 1 induces a well-defined R-linear map I/I? — .J. Note that .J is an R-module since
J2=0.
We would like 1/;0 to factor through R (i.e., to map I to 0), but there’s no reason it should. However, we
have that a map ¢ : A[X] — T has w01 = w o)y = ¥ o ¢ if and only if 1)(xy) — t5 € J. So, we have

{tuples of elements (j)) in J} <— {A-alg maps ¢ : A[X] — T agreeing with ¥y mod .J} .

(x) | (zx =t +3)
Now, we also have

{tuples of elements (jx) in J} =<— {A-mod maps 6 : @ Rdzy — J} .

(3a) 1 (dxx — jx)

The condition for ¢ : A[X] — T to factor through R is ¢(I) < 0, which is f(ty + jx) = 0 for all f e I. We
can write this as 0 = f(ty + ja) = f(tr) + 2\ L (¢)jx. This condition for all f € I is equivalent to the

diEA
diagram commuting:

d

(6.2) /12 @, Rdx,

N,

e if A — R is formally unramified, /12 4, @ Rdx) is surjective, so there is at most one map § making

Now we observe that

the diagram commute;
e if A — R is formally étale, I/I? 4, @ Rdzx) is bijective, so there is exactly one map ¢ making the
diagram commute;
e if A —» R is formally smooth, I/I> 4, @ Rdx) is a split injection, so there is at least one map ¢
making the diagram commute
This shows the forward implication in each part.
For the converse, first we choose T = A[X]/I?, J = I/I?, and ¢ : R — T/J the identity map. We can
take 1o : A[X] — A[X]/I? to be the quotient map, so g : I/I?> — J in (??) is the identity map. Thus, if a

map J exists making the diagram commute, we have that d is a split injection, so ¢ is formally smooth.
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Next, we show that if uniqueness of the lift holds for all modules, then d is surjective, by way of contra-
positive. If d is not surjective, let M = coker(d), and take T = Rx M, J =00 M, and ¢ : R — T/J the
identity map. We have that R is a subring of R x M, and we can take ¥ : A[X] - R < R x M to be the
quotient map. Then 1y : I/I? — J is the zero map. But we can take either ¢ : @, Rdxy — M as the zero
map or as the quotient map, so the lifting is not unique.

The formally étale case follows from the other two. O

Remark 6.3. In the Theorem above, we can replace the condition “J? = 07 with “J is nilpotent” (there
exists n such that I™ = 0). To see it, write T — T/I""' — T/I""? — ... — T/I? — T/I and note that in

each step one kills a square zero ideal in the source. Then consider the following diagram:

R- T/1
\\\\
N -
AN \\2 T2
NN ~
\ > A
AN
\ AN T/12
NN
AN
\ N 3
\ ~
\ EN
P \ T/I3
Yo\
\
\
\
\
\
\
N
N\
A T

If ¢ is formally unramified, by the definition, there is at most one v, making the A, R, T/I?, T/I square
commute. Given 3, ¥4 making the A, R, T/I3, T/I square commute, the maps w313 and w315 make the
A, R, T/I?, T/I square commute, so both equal 12. That is, 13 and 9§ make the A, R, T/I®, T/I* square
commute, so they are equal by the definition. Continuing like so, we see that at most one 1, makes the
diagram commute.

The argument for formal smoothness is similar, and the formally étale case follows from these.

Proposition 6.4. Let A 2R S be ring homomorphisms.
(1) If ¢ and ¢y are formally unramified, then so is ¥o.
(2) If ¢ and ¢y are formally smooth, then so is V.
(3) If ¢ and ¢ are formally étale, then so is .

Proof. Consider the diagram

S — o T/]
\
\

o
\

R S

\

¢>T ; N
AN

A T

with J nilpotent. For (1), by Grothendieck’s definition applied to the square A, R, T, T'/J, there is at

most one map v that makes the square commute. Now, given maps u, i’ making the square A, S, T, T'/J
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commute, put and p'tp make the square A, R, T, T//J commute, so must equal v. Then p and p’ make the
square R, S, T, T/J with base v commute, so applying Grothendieck’s definition, we get that u = p’. For
(2), by Grothendieck’s definition applied to the square A, R, T, T/J, there exists a map v that makes the
square commute. Then applying Grothendieck’s definition to the square the square R, S, T, T'/J with base

v, there is a 4 making the diagram commute. (3) follows from the other two. g

Proposition 6.5. Let A % Rbea ring homomorphism, and S be an A-algebra. Consider the map A-algebra
map S 5%, g ®a R given by extension of scalars.

(1) If ¢ is formally unramified, then so is S ®a .

(2) If ¢ is formally smooth, then so is S ®a4 ¢.

(3) If ¢ is formally étale, then so is S ®a ¢.

Proof. Consider a diagram
R—'>S®iR—>T/J
Y VN,
4 S@? N T
~Is
A S =T
with J nilpotent. For (1), by Grothendieck’s definition applied to the square A, R, T, T'//.J, there is at most

one map v making the diagram commute. Recall the universal property of base change: for every A-algebra

map v from R to an S-algebra T, there is a unique S-algebra homomorphism ¢ from S ® 4 R to T such that
v = (n. Thus, given a ¢ making the square S, S®g, T, T/J commute, ¢ is an S-algebra homomorphism (by
the bottom triangle commuting) and ¢n makes the big square commute, so must be v. Since v was unique,

by the universal property, ¢ is unique, as required. (2) and (3) are similar. ]
6.2. Unramified morphisms.

Proposition 6.6. Let K be a field, and (R,m,k) be a local ring essentially algebra finite over K. The

following are equivalent:

(1) R =k is a finite separable field extension of K.
(2) R is essentially étale over K.

(3) R is essentially unramified over K.

Proof. We have already seen that (1) = (2), and (2) = (3) is immediate from the definition, so we only
need to show (3) = (1). Consider the Jacobi-Zariski sequence from the triple K — R — k:

= Tpg = Trr = kE®r Qrjx = Uy — Qg — 0.

Since K — R is essentially unramified, we have Qg x = 0. Also, since R — k is surjective with kernel m, we
have Qyr =0 and I'y g = m/m?. We also know that the composition K — R — k is essentially unramified,
and is finitely generated as a field extension, so K — k is finite separable, and thus essentially étale, so
[y x = 0. But then m/m? =0,som =0 and R = k is a field (that is still finite separable over K). |

Theorem 6.7. Let (R,m, k) — (S,n,£) be an essentially algebra-finite homomorphism of local rings. Then

S is essentially unramified over R if and only if n = mS and ¢ is a finite separable extension of k.

Proof. If R — S is formally unramified, then so is k > R/m®pr S =~ S/mS. By the field case, we know that
S/mS = £, son =mS, and that /¢ is a finite separable extension of k. Conversely, if n = mS, we consider the
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second fundamental sequence associated to R — S — S/mS:

mS
m2S

We have Qg/msir = Qs/ms|r/m = Qp = 0, and since mS is generated by elements of R, which are in the

— S/mS ®s Qg|r = Qs/ms|r — 0.

kernel of d, the first map is zero, so Qgr/nQgr = S/MS ®s Qg g = 0. Since Qg is finitely generated over
S, by NAK we conclude that it is zero, so R — S is essentially unramified. O

Example 6.8. Let A be a module-finite extension of Z, and q be a prime ideal of A, and let (p) = q N Z.
Note that Z,) has residue field ), which is perfect, so Z,/pZ,y — Aq/qAq4 is separable (and finite). Then
Aq is essentially unramified over Z, if and only if p ¢ q2. This is the classical definition of ramification
in number theory: a prime integer ramifies in a ring of integers if and only if it ends up an a power of a
maximal ideal.

For example, for A = Z[i], 2 ramifies in the prime (1 + i)A, since 2 = —i(1 + i), s0 Z(a) — Z[i](144) Is

essentially ramified.
6.3. Smooth morphisms.

Lemma 6.9. Let R be a K-algebra.

(1) If L/K is an extension field and R® L is reqular, then R is regular.
(2) If L/K s a finite separable extension field and R is reqular, then R®k L is reqular.

Lemma 6.10. Let Ry € Ry € R3 € -+ be an increasing union of reqular rings. If the union is Noetherian,

then it is regqular.

Proposition 6.11. Let R be an essentially algebra finite K-algebra. The following are equivalent:
(1) R®xk L is regular for any field extension L.
(2)
(3) R®x L is reqular for any field inseparable extension L.
(4)

R®y L is regular for any finite field extension L.

R®g L is reqular for any perfect extension L.

Proof. Note that the hypotheses imply that R ®x L is Noetherian. Clearly (1) = (2) = (3) and (1) = (4)
. We also have (3) = (2) by ??, and (3) = (4) and (2) = (1) follow from ??. Also, (4) = (3) by ??, since

any inseparable extension is contained in a perfect extension. O
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