ASSIGNMENT \#5

(1) A magic square of size n and row sum t is an $n \times n$ matrix with entries in $\mathbb{Z}_{\geqslant 0}$ such that each row and each column adds up to t. In this problem, we will prove that the for a fixed n, the number of $n \times n$ magic squares with row sum t is eventually equal to a polynomial of degree ?

Let K be a field, $X=\left[\begin{array}{ccc}x_{11} & \cdots & x_{1 n} \\ \vdots & \ddots & \vdots \\ x_{n 1} & \cdots & x_{n n}\end{array}\right]$ be a matrix of indeterminates, and $R=K[X]$ be a polynomial ring. For any $n \times n$ matrix A with entries in $\mathbb{Z}_{\geqslant 0}$, write X^{A} for the monomial $x_{11}^{A_{11}} \cdots x_{n n}^{A_{n n}}$.

A permutation matrix is a matrix such that for each row and each column, there is only one nonzero entry, and the value of that entry is one. Equivalently, a permutation matrix is a magic square with row sum one.
(a) Show that every magic square is a sum of permutation matrices.
(b) Show that the K-vector subspace S of R with basis

$$
\left\{X^{A} \mid A \text { is a magic square }\right\}
$$

is a K-subalgebra of R, and that S generated as a K-algebra by the set

$$
\left\{X^{A} \mid A \text { is a permutation matrix }\right\} .
$$

(c) Show that S is a standard graded K-algebra if one sets

$$
\operatorname{deg}\left(X^{A}\right)=\left(a_{11}+a_{12}+\cdots+a_{1 n}+\cdots+a_{n n}\right) / n
$$

(d) Compute the dimension of S.
(e) Explain how the conclusion follows.
(2) Let $\psi:(R, \mathfrak{m}) \rightarrow(S, \mathfrak{n})$ be a flat homomorphism.
(a) Show that ${ }^{1}$ for any nonzero R-module $M, S \otimes_{R} M \neq 0$.
(b) Show that ${ }^{2} \psi$ is injective.
(c) Show that ${ }^{3}$ the conclusion of the "Going Down" theorem holds for ψ.
(d) Show that $\operatorname{dim}(R)+\operatorname{dim}(S / \mathfrak{m} S)=\operatorname{dim}(S)$.

[^0]
[^0]: ${ }^{1}$ Hint: NAK
 ${ }^{2}$ Hint: Show that for any ideal $J \subset R, J \otimes_{R} S \cong J S$, and let $J=\operatorname{ker}(\psi)$.
 ${ }^{3}$ Hint: Show that $R_{\mathfrak{p}} / \mathfrak{p}^{\prime} R_{\mathfrak{p}} \rightarrow S_{\mathfrak{q}} / \mathfrak{p}^{\prime} S_{\mathfrak{q}}$ is flat. It might help to note that if M is a flat A-module and B is a flat A-algebra, then $B \otimes_{A} M$ is a flat B-module.

