## ASSIGNMENT \#4

(1) Let $K$ be a field, and $R$ be a positively graded $K$-algebra. Let $M$ be ${ }^{1}$ an $\mathbb{N}$-graded $R$-module.
(a) Show that $\left(R_{+}\right) M=M$ implies $M=0$.
(b) Show that for a subset of homogeneous elements $S \subset M, M$ is generated by $S$ as an $R$-module if and only if $M /\left(R_{+}\right) M$ is generated by the images of the elements of $S$ as a $K$-vector space.
(2) Compute the dimension of each of the following rings $R$, where $K$ is a field and $x, y, z, u, v$ are indeterminates:
(a) $R=\frac{K[x, y, z]}{\left(x^{3}, x^{2} y, x y z\right)}$.
(b) $R=K\left[x^{2} u, x y u, y^{2} u, x^{2} v, x y v, y^{2} v\right] \subseteq K[x, y, u, v]$.
(c) $R=\frac{K[x, y, z, u, v]}{\left(x^{3} u^{2}+y^{3} u v+z^{3} v^{2}\right)}$.
(d) $R=\frac{K[x, y, u, v]}{\left(u^{3}-x y, v^{5}-x^{2} u-y^{3}\right)}$.
(3) Let $K$ be a field, and $R \subseteq S$ be a module-finite inclusion of finitely generated $K$-algebras that are both domains ${ }^{2}$. Show that for any $\mathfrak{q} \in \operatorname{Spec}(S)$, $\operatorname{height}(\mathfrak{q})=\operatorname{height}(\mathfrak{q} \cap R)$.
(4) Let $\psi: R \hookrightarrow S$ be an algebra-finite inclusion of rings.
(a) Show that if $R$ is a domain, then $\operatorname{im}\left(\psi^{*}\right)$ contains a nonempty open subset of $\operatorname{Spec}(R)$.
(b) Show that ${ }^{3}$ for every minimal prime $\mathfrak{p}$ of $R, \operatorname{im}\left(\psi^{*}\right)$ contains a nonempty open subset of $V(\mathfrak{p})$.
(5) Let $X=\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23}\end{array}\right]$ be a $2 \times 3$ matrix of indeterminates over $\mathbb{C}$ and $R=\mathbb{C}[X]$. Let $I$ be the ideal of $2 \times 2$ minors of $X$. Show $^{4}$ that $\mathbb{C}\left[x_{11}, x_{12}-x_{21}, x_{13}-x_{22}, x_{23}\right]$ is a Noether normalization for $R / I$, and conclude that the height of $I$ is two.

[^0]
[^0]:    ${ }^{1}$ Note that we are not assuming that $M$ is finitely generated.
    ${ }^{2}$ Note that we are not assuming that $R$ is normal.
    ${ }^{3}$ First show that each minimal prime $\mathfrak{p}$ is in the image of $\operatorname{im}\left(\psi^{*}\right)$, so $\mathfrak{p} S \cap R=\mathfrak{p}$. To see this, you may want to consider the localization of the map $\psi$ at $(R \backslash \mathfrak{p})$.
    ${ }^{4}$ Hint: You may want to use the problem (1) to show that that the map is module-finite.

