ASSIGNMENT #4

- (1) Let K be a field, and R be a positively graded K-algebra. Let M be¹ an N-graded R-module.
 - (a) Show that $(R_+)M = M$ implies M = 0.
 - (b) Show that for a subset of homogeneous elements $S \subset M$, M is generated by S as an R-module if and only if $M/(R_+)M$ is generated by the images of the elements of S as a K-vector space.
- (2) Compute the dimension of each of the following rings R, where K is a field and x, y, z, u, v are indeterminates:
 - $\begin{array}{l} \text{(a)} \ \ R = \frac{K[x,y,z]}{(x^3,x^2y,xyz)}. \\ \text{(b)} \ \ R = K[x^2u,xyu,y^2u,x^2v,xyv,y^2v] \subseteq K[x,y,u,v]. \\ \text{(c)} \ \ R = \frac{K[x,y,z,u,v]}{(x^3u^2 + y^3uv + z^3v^2)}. \\ \text{(d)} \ \ R = \frac{K[x,y,u,v]}{(u^3 xy,v^5 x^2u y^3)}. \end{array}$
- (3) Let K be a field, and $R \subseteq S$ be a module-finite inclusion of finitely generated K-algebras that are both domains². Show that for any $\mathfrak{q} \in \operatorname{Spec}(S)$, $\operatorname{height}(\mathfrak{q}) = \operatorname{height}(\mathfrak{q} \cap R)$.
- (4) Let $\psi : R \hookrightarrow S$ be an algebra-finite inclusion of rings.
 - (a) Show that if R is a domain, then $im(\psi^*)$ contains a nonempty open subset of Spec(R).
 - (b) Show that³ for every minimal prime \mathfrak{p} of R, $\operatorname{im}(\psi^*)$ contains a nonempty open subset of $V(\mathfrak{p})$.
- (5) Let $X = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix}$ be a 2 × 3 matrix of indeterminates over \mathbb{C} and $R = \mathbb{C}[X]$. Let I be the ideal of 2 × 2 minors of X. Show⁴ that $\mathbb{C}[x_{11}, x_{12} x_{21}, x_{13} x_{22}, x_{23}]$ is a Noether normalization for R/I, and conclude that the height of I is two.

¹Note that we are not assuming that M is finitely generated.

²Note that we are not assuming that R is normal.

³First show that each minimal prime \mathfrak{p} is in the image of $\operatorname{im}(\psi^*)$, so $\mathfrak{p}S \cap R = \mathfrak{p}$. To see this, you may want to consider the localization of the map ψ at $(R \setminus \mathfrak{p})$.

⁴Hint: You may want to use the problem (1) to show that that the map is module-finite.