FINAL EXAM

Please turn in four of the following problems. If you intend to take a written algebra comprehensive exam, I recommend attempting the problems in a timed setting with no notes at first, and then continuing with the problems later.
(1) Let K be a field and $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over K. Let R be any subring of S that contains every polynomial $f \in S$ with the property that

$$
f\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)=f\left(x_{2}, x_{3}, \ldots, x_{n}, x_{1}\right)
$$

Show that R is a finitely generated K-algebra.
(2) Let $K \subseteq L$ be fields, and R be a finitely generated K-algebra. Determine if each of the following is true or false, and justify with a proof or counterexample.
(a) If R is a domain, then $L \otimes_{K} R$ is a domain.
(b) If $L \otimes_{K} R$ is a domain, then R is a domain.
(c) If R and $L \otimes_{K} R$ are domains, then $\operatorname{dim}(R)=\operatorname{dim}\left(L \otimes_{K} R\right)$.
(3) Let R be a Noetherian ring. Let M be a nonzero R-module (not necessarily finitely generated!), and suppose that $\operatorname{Ass}_{R}(M)$ has finitely many minimal elements. Show that the support of M is a Zariski closed subset of $\operatorname{Spec}(R)$.
(4) Let R be a domain and F be its fraction field. For an R-module M, the rank of M is the dimension of the F-vector space $M_{(0)} \cong F \otimes_{R} M$. Assume that M is finitely generated.
(a) Show that the rank of M is finite.
(b) Show that there is a short exact sequence of the form

$$
0 \rightarrow R^{\oplus r} \rightarrow M \rightarrow T \rightarrow 0
$$

with $r=\operatorname{rank}(M)$ and T a torsion module.
(5) Let R be a Noetherian ring, and

$$
I=\mathfrak{q}_{1} \cap \mathfrak{q}_{2} \cap \mathfrak{q}_{3}=\mathfrak{r}_{1} \cap \mathfrak{r}_{2} \cap \mathfrak{r}_{3}
$$

be two minimal primary decompositions of an ideal I. Show that ${ }^{1}$ after possibly reordering the ideals above, there is a minimal primary decomposition of I of the form

$$
I=\mathfrak{q}_{1} \cap \mathfrak{q}_{2} \cap \mathfrak{r}_{3}
$$

[^0](6) Let K be a field, and
\[

R=K\left[$$
\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23}
\end{array}
$$\right]
\]

Let I be the ideal generated by the 2×3 minors of the matrix of variables. Let

$$
S=K\left[\begin{array}{lll}
u_{1} v_{1} & u_{1} v_{2} & u_{1} v_{3} \\
u_{2} v_{1} & u_{2} v_{2} & u_{2} v_{3}
\end{array}\right] \subseteq K\left[u_{1}, u_{2}, v_{1}, v_{2}, v_{3}\right]
$$

Consider R as a graded ring with $\operatorname{deg}\left(x_{i j}\right)=1$ and S as a graded ring with $\operatorname{deg}\left(u_{i} v_{j}\right)=1$.
(a) Show that there is a surjective graded K-algebra homomorphism $\phi: R / I \rightarrow S$ given by sending $\phi\left(x_{i j}\right)=u_{i} v_{j}$ for all i, j.
(b) Compute the Hilbert function $H_{S}(t)$ and show 2 that $H_{R / I}(t) \leqslant H_{S}(t)$ for all t.
(c) Conclude that I is prime.
(7) Let (R, \mathfrak{m}, k) be a Noetherian local ring. Recall that a local ring is regular if $\operatorname{dim}(R)=\operatorname{dim} k\left(\mathfrak{m} / \mathfrak{m}^{2}\right)$. Show that if R is regular then $\operatorname{gr}_{\mathfrak{m}}(R)$ is a polynomial ring.
(Bonus) Show that the conclusion of (3) is false if R is not Noetherian.

[^1]
[^0]: ${ }^{1}$ Hint: Take $\mathfrak{q}_{3}, \mathfrak{r}_{3}$ whose radicals are equal and are not contained in any other element of $\operatorname{Ass}(R / I)$ (and explain why you can). Then use the multiplicative set $W=R \backslash\left(\sqrt{\mathfrak{q}_{1}} \cup \sqrt{\mathfrak{q}_{2}}\right)$.

[^1]: ${ }^{2}$ Hint: Show that any monomial in R is equivalent modulo I to either

 - a monomial in $K\left[x_{11}, x_{12}, x_{13}, x_{23}\right]$
 - a monomial in $K\left[x_{11}, x_{12}, x_{22}, x_{23}\right]$, or
 - a monomial in $K\left[x_{11}, x_{21}, x_{22}, x_{23}\right]$.

