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1. Wednesday, January 27

What is a number? Certainly the things used to count sheep, money,
etc. are numbers: 1, 2, 3, . . . . We will call these the natural numbers
and write N for the set of all natural numbers

N = {1, 2, 3, 4, . . . }.

Since we like to keep track of debts too, we’ll allow negatives and 0,
which gives us the integers:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, 4, . . . }.

(The symbol Z is used since the German word for number is zahlen.)
Fractions should count as numbers also, so that we can talk about

eating one and two-thirds of a pizza last night. We define a rational
number to be a number expressible as a quotient of two integers: m

n
for

m,n ∈ Z with n 6= 0. For example

5

3
,
2

7
,
2019

2020

are rational numbers. Of course, we often talk about numbers such as
“two and a fourth”, but that the same as 9

4
. Every integer is a rational

number just by taking 1 for the denominator; for example, 7 = 7
1
. The

set of all rational numbers is written as Q (for “quotient”).
You might not have thought about it before, but an expression of

the form m
n

is really an “equivalence class”: the two numbers m
n

and a
b

are deemed equal if mb = na. For example 6
9

= 2
3

because 6 · 3 = 9 · 2.
We’ll talk more about decimals later on, but recall for now that a dec-

imal that terminates is just another way of representing a rational num-
ber. For example, 1.9881 is equal to 19881

10000
. Less obvious is the fact that

a decimal that repeats also represents a rational number: For example,
1.333 . . . is rational (it’s equal to 4

3
) and so is 23.91278278278 . . . . We’ll

see why this is true later in the semester.
Are these all the numbers there are? Maybe no one in this class

would answer “yes”, but the ancient Greeks believed for a time that
every number was rational. Let’s convince ourselves, as the Greeks did
eventually, that there must be numbers that are not rational. Imagine
a square of side length 1. By the Pythagorean Theorem, the length of
its diagonal, call this number c, must satisfy

c2 = 12 + 12 = 2.

That is, there must be a some number whose square is 2 since certainly
the length of the diagonal in such a square is representable as a number.
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Now, let’s convince ourselves that there is no rational number with this
property. In fact, I’ll make this a theorem.

Theorem 1.1. There is no rational number whose square is 2.

Preproof Discussion 1. Before launching a formal proof, let’s philos-
ophize about how one shows something does not exist. To show some-
thing does not exist, one proves that its existence is not possible. For
example, I know that there must not be large clump of plutonium sewn
into the mattress of my bed. I know this since, if such a clump existed,
I’d be dead by now, and yet here I am, alive and well!

More generally and formally, one way to prove the falsity of a state-
ment P is to argue that if we assume P to be true then we can deduce
from that assumption something that is known to be false. If you can
do this, then you have proven P is false. In symbols: If one can prove

P =⇒ Contradiction

then the statement P must in fact be false.
In the case at hand, letting P be the statement “there is a rational

number whose square is 2”, the Theorem is asserting that P is false.
We will prove this by assuming P is true and deriving an impossibility.

This is known as a proof by contradiction. (Some mathematicians
would actually not consider this to be a proof by contradiction. For
some, a proof by contradiction refers to when the truth of a statement
P is established by assuming the statement “not P” and deducing from
that a falsity.)

Proof. By way of contradiction, assume there were a rational number
q such that q2 = 2. By definition of “rational number”, we know that
q can be written as m

n
for some integers m and n such that n 6= 0.

Moreover, we may assume that we have written q is reduced form so
that m and n have no prime factors in common. In particular, we may
assume that not both of m and n are even. (If they were both even,
then we could simplify the fraction by factoring out common factors
of 2’s.) Since q2 = 2, m2

n2 = 2 and hence m2 = 2n2. In particular, this
shows m2 is even and, since the square of an odd number is odd, it
must be that m itself is even. So, m = 2a for some integer a. But
then (2a)2 = 2n2 and hence 4a2 = 2n2 whence 2a2 = n2. For the same
reason as before, this implies that n must be even. But this contradicts
the fact that m and n are not both even.

We have reached a contradiction, and so the assumption that there
is a rational number q such that q2 = 2 must be false. �
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A version of the previous proof was known even to the ancient
Greeks.

Our first major mathematical goal in the class is to make a formal
definition of the real numbers. Before we do this, let’s record some
basic properties of the rational numbers. I’ll state this as a Proposition
(which is something like a minor version of a Theorem), but we won’t
prove them; instead, we’ll take it for granted to be true based on our
own past experience with numbers.

For the rational numbers, we can do arithmetic (+,−,×,÷) and we
also have a notion of size (<,>). The first seven observations below
describe the arithmetic, and the last three describe the notion of size.

Proposition 1.2. The set of rational numbers form an “ordered field”.
This means that the following ten properties hold:

(1) There are operations + and · defined on Q, so that if p, q are
in Q, then so are p+ q and p · q.

(2) Each of + and · is a commutative operation (i.e., p+ q = q+ p
and p · q = q · p hold for all rational numbers p and q).

(3) Each of + and · is an associative operation (i.e., (p+ q) + r =
p+ (q+ r) and (p · q) · r = p · (q · r) hold for all rational numbers
p, q, and r).

(4) The number 0 is an identity element for addition and the num-
ber 1 is an identity element for multiplication. This means that
0 + q = q and 1 · q = q for all q ∈ Q.

(5) The distributive law holds: p · (q + r) = p · q + p · r for all
p, q, r ∈ Q.

(6) Every number has an additive inverse: For any p ∈ Q, there is
a number −p satisfying p+ (−p) = 0.

(7) Every nonzero number has a multiplicative inverse: For any p ∈
Q such that p 6= 0, there is a number p−1 satisfying p · p−1 = 1.

(8) There is a “total ordering” ≤ on Q. This means that
(a) For all p, q ∈ Q, either p ≤ q or q ≤ p.
(b) If p ≤ q and q ≤ p, then p = q.
(c) For all p, q, r ∈ Q, if p ≤ q and q ≤ r, then p ≤ r.

(9) The total ordering ≤ is compatible with addition: If p ≤ q then
p+ r ≤ q + r.

(10) The total ordering ≤ is compatible with multiplication by non-
negative numbers: If p ≤ q and r ≥ 0 then pr ≤ qr.

2. Friday, January 29

Which of the properties from Proposition 1.2 does N satisfy?
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The commutativity, associativity, distributive law, multiplicative iden-
tity, and all of the ordering properties are true for N. There is one other
important property of N, which we accept to be true without proof.
Such a property is called an axiom.

Axiom 2.1 (Well-ordering axiom). Every nonempty subset of N has a
smallest element (which we call its minimum).

As we will discuss later, the well-ordering axiom is closely related to
the principle of induction.

Example 2.2. For the set of all even multiples of 7, S = {7 · (2n) | n ∈ N},
we have min(S) = 14.

We expect everything from Proposition 1.2 to be true for the real
numbers. We will build them into our definition. To define the real
numbers R, we take the ten properties listed in the Proposition to be
axioms. It turns out the set of real numbers satisfies one key additional
property, called the completeness axiom, which I cannot state yet.

Axioms. The set of all real numbers, written R, satisfies the following
eleven properties:

(Axiom 1) There are operations + and · defined on R, so that if x, y ∈ R,
then so are x+ y and x · y.

(Axiom 2) Each of + and · is a commutative operation.
(Axiom 3) Each of + and · is an associative operation.
(Axiom 4) The real number 0 is an identity element for addition and the

real number 1 is an identity element for multiplication. This
means that 0 + x = x and 1 · x = x for all x ∈ R.

(Axiom 5) The distributive law holds: x · (y + z) = x · y + x · z for all
x, y, z ∈ R.

(Axiom 6) Every real number has an additive inverse: For any x ∈ R,
there is a number −x satisfying x+ (−x) = 0.

(Axiom 7) Every nonzero real number has a multiplicative inverse: For any
x ∈ R such that x 6= 0, there is a real number x−1 satisfying
x−1 · x = 1.

(Axiom 8) There is a “total ordering” ≤ on R. This means that
(a) For all x, y ∈ R, either x ≤ y or y ≤ x.
(b) If x ≤ y and y ≤ z, then x ≤ z.
(c) For all x, y, z ∈ R, if x ≤ y and y ≤ z, then x ≤ z.

(Axiom 9) The total ordering ≤ is compatible with addition: If x ≤ y then
x+ z ≤ y + z for all z.

(Axiom 10) The total ordering ≤ is compatible with multiplication by non-
negative real numbers: If x ≤ y and z ≥ 0 then zx ≤ zy.
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(Axiom 11) The completeness axiom holds. (I will say what this means
later.)

There are many other familiar properties that are consequences of
this list of axioms. As an example we can deduce the following prop-
erty:

“Cancellation of Addition”: If x+y = z+y then x = z.

Let’s prove this carefully, using just the list of axioms: If x+ y = z+ y
then we can add −y (which exists by Axiom 6) to both sides to get
(x+y)+(−y) = (z+y)+(−y). This can be rewritten as x+(y+(−y)) =
z+ (y+ (−y)) (Axiom 3) and hence as x+ 0 = z+ 0 (Axiom 6), which
gives x = z (Axiom 4 and Axiom 2).

For another example, we can deduce the following fact from the
axioms:

r · 0 = 0 for any real number r.

Let’s prove this carefully: Let r be any real number. We have 0+0 = 0
(Axiom 4) and hence r·(0+0) = r·0. But r·(0+0) = r·0+r·0 (Axiom 5)
and so r · 0 = r · 0 + r · 0. We can rewrite this as 0 + r · 0 = r · 0 + r · 0
(Axiom 4). Now apply the Cancellation of Addition property (which
we previously deduced from the axioms) to obtain 0 = r · 0.

As I said, there are many other familiar properties of the real num-
bers that follow from these axioms, but I will not list them all. The
great news is that all of these familiar properties follow from this short
list of axioms. We will prove a couple, but for the most part, I’ll rely
on your innate knowledge that facts such as r · 0 = 0 hold.

I owe you a description of the very important Completeness Axiom,
and it will take a bit of time to do so. Before we get to this, it will be
helpful to review set notation, and some basics of proof-writing.

Often, sets are described as subsets of other larger sets, by specifying
properties. For example, when I write

S = {m ∈ Z | m = a2 for some a ∈ Z}
I am specifying a subset of the set of all integers Z. In words, S is:“the
set of those integers that are equal to the square of some integer”. We
could also write this set out by listing its elements:

S = {0, 1, 4, 9, 16, 25, 36, . . . }.
It’s safer in general to use the former description, since you don’t have
to worry about the reader getting the pattern.

The previous is an example of a subset of Z, but we will mostly be
concerned with subsets of R. For example, we might consider the set

{x ∈ R | x2 < 2}.
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We will also deal with “intervals” a lot. When I write (0, 1) I mean
the set {x ∈ R | 0 < x < 1}. That is, it is all real numbers strictly
between 0 and 1.

More generally, if a, b are real numbers and a < b, then

(a, b) = {x ∈ R | a < x < b}
(What if b ≤ a?) The set (a, b) is called an open interval.

We also have [a, b], known as a closed interval and defined to be

[a, b] = {x ∈ R | a ≤ x ≤ b}.
We also have [a, b), (a, b], (a,∞), [a,∞), (−∞, b), and (−∞, b], all of
which you probably have seen before.

We will also have need to consider sets defined in more complicated
ways such as

S = {1− 1

n
| n ∈ N}.

The latter is a bit different than the previous examples. The previous
ones had form { element of a set | property holds }, but this one has
the form { expression involving symbols | allowable values of these symbols }.
Explicitly, this example is the set {0, 1

2
, 2
3
, 3
4
, 4
5
, . . . }.

Recall also a few ways of making sets from others:

• union : S ∪ T = {x | x ∈ S or x ∈ T}
• intersection : S ∪ T = {x | x ∈ S and x ∈ T}
• set difference : S r T = {x | x ∈ S and x /∈ T}.

Let’s now talk a bit more about rules of logic, methods of proof,
quantification, etc. Our book has a very nice treatment of these topics
in Sections 1.4 and 1.5. Part of the next problem set will involve your
reading these sections on your own and doing some of the exercises.
Here, I’ll just give some highlights.

Let me start with some rules of logic, and how that affects proofs.
First, a statement is a sentence (or sometimes sequence of sentences)
that is either true or false. Things like “Jack’s shirt is ugly” is not a
statement, nor is “Go Huskers!”. But “All odd numbers are prime” is
a statement — it happens to be false. The sentence

“The digit 9 occurs infinitely often in the decimal ex-
pansion of π.”

is a statement, as it is surely either true or false. But, no one knows
which!

An odder example is “This sentence is false”. Is it a statement? (Is
it true? Is it false?) No!

If P and Q are any two statements, then we can form compound
statements from them such as
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• P and Q.
• P or Q.
• Not P .
• If P then Q.

The “truth values” for the first three are pretty clear, but be careful
about the last.

• “P and Q” is a true statement when both P and Q are true
statements.
• “P or Q” is a true statement when either P or Q is a true

statement.
• “Not P” is true when P is a false statement.
• “If P then Q” is true when P is false or Q is true. In other

words “If P then Q” is logically equivalent to “not P or Q”.

Which of the following are true?

(1) If 1 + 1 = 1, then I am the pope.
(2) If 8 is prime then every real number is an integer.
(3) If my name is Jack then I am the pope.
(4) If it had been raining this morning then I would have brought

an umbrella with me to class.

All but the third are true.
Most of the statements that we consider are, or can be framed as

if-then statements: anything with hypotheses and a conclusion is an if-
then statement. How do we prove such a statement? To give a “direct
proof” of “if P then Q” we:

(1) Assume P ,
(2) Do some stuff, then
(3) Conclude Q.

For example, the Goldbach Conjecture posits that if n is an even
integer greater than 2, then n is a sum of two primes. (A conjecture
is a statement that people believe to be true based on some evidence,
but is not proven.) I can’t prove this conjecture, but I can tell you the
first and last sentence of a proof: “Assume that n is an even integer.
. . . Thus, n is a sum of two primes.”

3. Monday, February 1

As I said earlier, “If P then Q” is the same as “not P or Q”. It
follows that “If not Q then not P” is the same as “not not Q or not
P” and hence is the same as “not P or Q”. That is:

“If P then Q” is logically equivalent to “If not Q then
not P”.
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“If not Q then not P” is known as the contrapositive of “If P then Q”.
So, an if-then statement and its contrapositive are logically equivalent.

Often when proving an if-then statement, it works a bit better to
give a “direct” proof of the contrapositive. That is, in a proof of “If P
then Q” by contraposition we:

(1) Assume not Q,
(2) Do some stuff, then
(3) Conclude not P .

Example 3.1. An irrational number is a real number that is not ra-
tional. Consider the following assertion:

Let r be any rational number and let x be any real
number. If x is irrational then x+ r is irrational.

This is logically equivalent to:

Let r be any rational number and let x be any real
number. If x+ r is rational then x is rational.

Let us prove the latter statement “directly”: Let r be any rational
number and let x be any real number. Suppose x+ r is rational. Then
since r is rational, −r is also rational (by Proposition 1.2, part (6)).
It follows that (x+ r) + (−r) is also rational (by Proposition 1.2, part
(1)) and hence (x+ r) + (−r) = x+ (r+ (−r)) = x+ 0 = x is rational.

Never, ever, ever, ever confuse the contrapositive of an if-then state-
ment with its converse. The converse of “If P then Q” is “If Q then P”.

Example 3.2. Give examples of statements that are true whose con-
verses are false.

Recall that when we say “P if and only if Q” we mean “If P then
Q, and if Q then P”. In other words, an “if and only if” statement
includes both an if-then statement and its converse. The statement
“P if and only if Q” is true when either P and Q are both true or P
and Q are both false, and it is false in the other two cases, when one
is true and the other is false. A proof of such a statement generally
has two parts, one where we prove P implies Q (either directly or
by contraposition) and one where we prove Q implies P (again either
directly or by contraposition).

Let me also say a bit about quantification: This refers to usage of
“for every” or “there exists”. For example, “For every real number x,
x2 is strictly positive” and “There exists an even integer that is prime”.

“For every” statements are sometimes better cast as if-then state-
ments. For example, the first one above is equivalent to “If x is a real
number, then x2 is strictly positive”. So, be aware that sometimes, as
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in this example, there is an implicit “For every” clause lurking about
even if you don’t see those words written.

The negation of a “for every” clause usually involves “there exists”.
For example the negation of “For every real number x, x2 is strictly
positive.” is “There is a real number x such that x2 is not strictly
positive”.

The negation of a “there exists” statement usually involves “for ev-
ery”. For example, the negation of “There is an even integer that is
prime” is “For every even integer n, n is not prime” or better “If n is
an even integer, then n is not prime”.

In general,

• the negation of “For every x ∈ S, P” is “There exists x ∈ S
such that not P”;
• the negation of “There exists x ∈ S such that P” for some

statement P is “For every x ∈ S, not P”.

How do we prove statements with quantifiers? To prove “For every
x ∈ S, P” , we

(1) Take an arbitrary x ∈ S,
(2) Do some stuff, then
(3) Conclude that P holds for x.

In the first step we specify one element of S, but we don’t get to decide
which one. In particular, its name should be a variable, rather than
the name of any specific element in S.

To disprove “For every x ∈ S, P” we can give a counterexample.
That means that we get to choose an element of S, and show that P
fails for our choice.

To prove “There exists x ∈ S such that P” , we just need to give an
example: we can choose any element of S and show that P holds for
that element.

Things get harder when we combine “for every” and “there exist”
clauses in one statement. One very important point here is that order
matters a lot. For example,

“For every n ∈ N there is an m ∈ N such that n < m”

and

“There is an m ∈ N such that for every n ∈ N, n < m”

have very different meanings. In fact, the first is clearly true (since
given an n one could, for example, take m = n + 1) and the second is
false.
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Never interchange the positions of “for
every” and “there exist” unless you in-
tend to change the meaning!

When we combine “for every” and “there exist” clauses with a nega-
tion things can also get confusing. For example: the negation of “For
every integer m there is an integer n such that n > m” is “There exists
an integer m such that for every integer n, n ≤ m.”

Using symbols sometimes helps focus attention on the underlying
logic. We write ∀ and ∃ in place of “for every” and “there exists”,
sometimes. For example the negation of “∀x ∈ R,∃n ∈ N such that
n > x” is “∃x ∈ R such that ∀n ∈ N, n ≤ x”

Discussion Questions, February 3

• Write the contrapositive, and the converse of each statement.
Is the statement true or false? Is the converse true or false?
Explain why (but don’t write a full proof). For each statement
below, a, b are real numbers.
♦ If a is irrational, then 1/a is irrational.

Contrapositive: “If 1/a is rational, then a is rational.
[True]
Converse: “If 1/a is irrational, then a is irrational.
[True]

♦ If a and b are both irrational, then ab is irrational.

Contrapositive: “If ab is rational, then either a or b is
rational. [False]
Converse: “If ab is irrational, then a and b are both
irrational. [False]

♦ If x > 3 then x2 > 9.

Contrapositive: “If x2 ≤ 9, then x ≤ 3. [True]
Converse: “If x2 > 9, then x > 3. [False]

• Write the negation of each statement. Is the statement true or
false? Explain why (but don’t write a full proof).
♦ ∃x ∈ Q: x2 = 2.
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Negation: ∀x ∈ Q, x2 6= 2. [The original is false.]

♦ ∀x ∈ Q, x2 > 0.

Negation: ∃x ∈ Q, x2 ≤ 0. [The original is false.]

♦ ∀x ∈ R, ∃y ∈ R: xy = 1.

Negation: ∃x ∈ R : ∀y ∈ R, xy 6= 1. [The original is
false.]

♦ ∃x ∈ R: ∀y ∈ R, ey < x.

Negation: ∀x ∈ R,∃y ∈ R : ey ≥ x. [The original is
false.]

♦ ∃x ∈ R: ∀y ∈ R, sin(y) < x.

Negation: ∀x ∈ R,∃y ∈ R : sin(y) ≥ x. [The original
is true.]

• Prove the following statements using the axioms of R and facts
we have proven in class.
♦ Let x be a real number. If there is a real number y such

that xy = 1, then x is nonzero.1

We argue the contrapositive. Let x be zero. Then, for
any y ∈ R, we have xy = 0, by a fact we proved in
class. In particular, we have xy 6= 0, as required.

♦ If x is a nonzero real number, then x2 is also nonzero.2

Let x be a nonzero real number. By Axiom 7, there
is an element x−1 ∈ R such that xx−1 = 1. Then
x2 · (x−1)2 = (xx−1)(xx−1) = 1, using Axioms 2 and
3 in the first equality and Axiom 5 in the second. By
the previous fact (using y = (x−1)2) we conclude that
x2 6= 0.

1Hint: Consider the contrapositive of this statement.
2Hint: Use x−1 and the previous statement.
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♦ For any real number x, x ≥ 0 if and only if −x ≤ 0.3

Let x ≥ 0. Adding (−x) to both sides (which exists by
Axiom 6), we obtain 0 = x + (−x) ≥ 0 + (−x) = −x
(by Axiom 9 and Axiom 5). Conversely, let −x ≤ 0.
Adding x to both sides, we obtain 0 = x + (−x) ≤
x+ 0 = x (by Axiom 9 and Axiom 5).

♦ 0 ≤ 1. 4

To obtain a contradiction, suppose that 1 < 0. Then
0 = −1 + 1 < −1 + 0 = −1. By the previous fact, we
then have 1 > 0, which contradicts the hypothesis.

♦ For any real number x, (−1) · x = −x.

Observe that

x+ (−1) · x = 1 · x+ (−1) · x = (1 +−1) · x = 0 · x = 0.

We also have x+(−x) = 0, so x+(−1)x = x+(−x). By
cancellation of addition, we conclude that (−1)x = −x.

♦ The product of two negative real numbers is nonnegative.

4. Friday, February 5

Definition 4.1. Let S be any subset of R. A real number b is called
an upper bound of S provided that for every s ∈ S, we have s ≤ b.

For example, the number 1 is an upper bound for the set (0, 1). The
number 182 is also an upper bound of this set and so is π. It is pretty
clear that 1 is the “best” (i.e., smallest) upper bound for this set, in
the sense that every other upper bound of (0, 1) must be at least as big
as 1. Let’s make this official:

Proposition 4.2. If b is an upper bound of the set (0, 1), then b ≥ 1.

I will prove this claim using just the axioms of the real numbers (in
fact, I will only use the first 10 axioms):

Proof. Suppose b is an upper bound of the set (0, 1). By way of con-
tradiction, suppose b < 1. (Our goal is to derive a contradiction from
this.)

3Hint: Add something to both sides.
4Hint: Try a proof by contradiction and use the previous fact.
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Consider the number y = b+1
2

(the average of b and 1). I will argue
that b < y and b ≥ y, which is not possible.

Since we are assuming b < 1, we have b
2
< 1

2
and hence

b =
2b

2
=
b

2
+
b

2
<
b

2
+

1

2
=
b+ 1

2
= y.

So, b < y.
Similarly,

1 =
1 + 1

2
>
b+ 1

2
= y

so that

y < 1.

Since 1
2
∈ S and b is an upper bound of S, we have 1

2
≤ b. Since we

already know that b < y, it follows that 1
2
< y and hence 0 < y. We

have proven that y ∈ (0, 1). But, remember that b is an upper bound
of (0, 1), and so we get y ≤ b by definition.

To summarize: given an upper bound b of (0, 1), starting with the
assumption that b < 1, we have deduced the existence of a number y
such that both b < y and y ≤ b hold. As this is not possible, it must
be that b < 1 is false, and hence b ≥ 1. �

This claim proves the (intuitively obvious) fact that 1 is “least upper
bound” of the set (0, 1). The notion of “least upper bound” will be an
extremely important one in this class.

Definition 4.3. A subset S of R is called bounded above if there exists
at least one upper bound for S. That is, S is bounded above provided
there is a real number b such that s ≤ b for all s ∈ S.

For example, (0, 1) is bounded above, by for example 50.
The subset N of R is not bounded above — there is no real number

that is larger than every natural number. This fact is surprisingly
non-trivial to deduce just using the axioms; in fact, one needs the
Completeness Axiom to show it. But of course our intuition tells us
that it is obviously true.

Let’s give a more interesting example of a subset of R that is bounded
above.

Example 4.4. Define S to be those real numbers whose squares are
less than 2:

S = {x ∈ R | x2 < 2}.
I claim S is bounded above. In fact, I’ll prove 2 is an upper bound:
Suppose x ∈ S. If x > 2, then x · x > x · 2 and x · 2 > 2 · 2, and hence
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x2 > 4 > 2. This contradicts the fact that x ∈ S. So, we must have
x ≤ 2.

A nearly identical argument shows that 1.5 is also an upper bound
(since 1.52 = 2.25 > 2) and similarly one can show 1.42 is an upper
bound. But 1.41 is not an upper bound. For note that 1.4112 = 1.99091
and so 1.41 ∈ S but 1.411 > 1.41.

Question: What is the smallest (or least) upper bound for this set
S? Clearly, it ought to be

√
2 (i.e., the positive number whose square

is equal to exactly 2), but there’s a catch: how do we know that such
real number exists?

Definition 4.5. Suppose S is subset of R that is bounded above. A
supremum (also known as a least upper bound) of S is a number ` such
that

(1) ` is an upper bound of S (i.e., s ≤ ` for all s ∈ S) and
(2) if b is any upper bound of S, then ` ≤ b.

Example 4.6. 1 is a supremum of (0, 1). Indeed, it is clearly an upper
bound, and in the “Claim” above, we proved that if b is any upper
bound of (0, 1) then b ≥ 1. Note that this example shows that a
supremum of S does not necessarily belong to S.

Example 4.7. I claim 1 is a supremum of (0, 1] = {x ∈ R | 0 < x ≤ 1}.
It is by definition an upper bound. If b is any upper bound of (0, 1]
then, since 1 ∈ (0, 1], by definition we have 1 ≤ b. So 1 is the supremum
of (0, 1].

The subset N does not have a supremum since, indeed, it does not
have any upper bounds at all.

Can you think of an example of a set that is bounded above but has
no supremum? There is only one such example and it is rather silly:
the empty set is bounded above. Indeed, every real number is an upper
bound for the empty set. So, there is no least upper bound.

Having explained the meaning of the term “supremum”, I can finally
state the all-important completeness axiom:

Axiom (Completeness Axiom). Every nonempty, bounded-above sub-
set of R has a supremum.

5. Monday, February 8

Note that I keep saying a supremum of a set, but in fact, when they
exist, there is only one possible supremum of a given set.

Proposition 5.1. If a subset of R has a supremum, then it is unique.
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Preproof Discussion 2. The proposition has the general form “If a
thing with property P exists, then it is unique”.

How do we prove a statement such as “If a thing with property P
exists, then it is unique”? We argue that if two things x and y both
have property P , then x and y must be the same thing.

Proof. Suppose both x and y are both suprema of the same subset S
of R. Then, since y is an upper bound of S and x is a supremum of S,
by part (2) of the definition of “supremum” we have y ≥ x. Likewise,
since x is an upper bound of S and y is a supremum of S, we have
x ≥ y by definiton. Since x ≤ y and y ≤ x, we conclude x = y. �

From now on we will speak of the supremum of a set (when it exists).
Let us now explore consequences of the completeness axiom. First

up, we show that it implies that
√

2 really exists:

Proposition 5.2. There is a positive real number whose square is 2.

Proof. Define S to be the subset

S = {x ∈ R | x2 < 2}.

S is nonempty since, for example, 1 ∈ S, and it is bounded above,
since, for example, 2 is an upper bound for S, as we showed earlier.
So, by the Completeness Axiom, S has a least upper bound, and we
know it is unique from the proposition above. Let us call it `. I will
prove `2 = 2.

We know one of `2 > 2, `2 < 2 or `2 = 2 must hold. We prove `2 = 2
by showing that both `2 > 2 and `2 < 2 are impossible.

We start by observing that 1 ≤ ` ≤ 2. The inequality 1 ≤ ` holds
since 1 ∈ S and ` is an upper bound of S, and the inequality ` ≤ 2
holds since 2 is an upper bound of S and ` is the least upper bound
of S.

Suppose `2 < 2. We show this leads to a contradiction by showing
that ` is not an upper bound of S in this case. We will do this by
constructing a number that is ever so slightly bigger than ` and belongs
to S. Let ε = 2 − `2. Then 0 < ε ≤ 1 (since `2 < 2 and `2 ≥ 1). We
will now show that `+ ε/5 is in S: We have

(`+ ε/5)2 = `2 +
2

5
`ε+

ε2

25
= `2 + ε(

2`

5
+

ε

25
).

Now, using ` ≤ 2 and 0 < ε ≤ 1, we deduce

0 <
2`

5
+

ε

25
≤ 4

5
+

ε

25
< 1.
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Putting these equations and inequalities together yields

(`+
ε

5
)2 < `2 + ε = 2.

So, ` + ε
5
∈ S and yet ` + ε

5
> `, contradicting the fact that l is an

upper bound of S. We conclude `2 < 2 is not possible.
Assume now that `2 > 2. Our strategy will be to construct a number

ever so slightly smaller than `, which therefore cannot be an upper
bound of S, and use this to arrive at a contradiction. Let δ = `2 − 2.
Then 0 < δ ≤ 2 (since ` ≤ 2 and hence `2 − 2 ≤ 2). Since δ > 0, we
have `− δ

5
< `. Since ` is the least upper bound of S, `− δ

5
must not

be an upper bound of S. By definition, this means that there is r ∈ S
such that ` − δ

5
< r. Since δ ≤ 2 and ` ≥ 1, it follows that ` − δ

5
is

positive and hence so is r. We may thus square both sides of `− δ
5
< r

to obtain

(`− δ

5
)2 < r2.

Now

(`− δ

5
)2 = `2 − 2`δ

5
+
δ2

25
= δ + 2− 2`δ

5
+
δ2

25
since `2 = δ + 2. Moreover,

δ + 2− 2`δ

5
+
δ2

25
= 2 + δ(1− 2`

5
+

δ

25
) ≥ 2 + δ(1− 4

5
+

δ

25
)

since ` ≤ 2. We deduce that

δ + 2− 2`δ

5
+
δ2

25
≥ 2 + δ(

1

5
) ≥ 2.

Putting these inequalities together gives r2 > 2, contrary to the fact
that r ∈ S. We conclude that `2 > 2 is also not possible.

Since `2 < 2 and `2 > 2 are impossible, we must have `2 = 2. �

The collection of rational numbers does not satisfy the completeness
axiom and indeed it is precisely the completeness axiom that differen-
tiates R from Q.

Example 5.3. Within the set Q the subset S = {x ∈ Q | x2 < 2}
does not have a supremum. That is, no matter which rational number
you pick that is an upper bound for S, you may always find an even
smaller one that is also an upper bound of S.

It is precisely the completeness axiom that assures us that everything
that ought to be a number (like the length of the hypotenuse in an
isosceles right triangles of side length 1) really is a number. It gives us
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that there are “no holes” in the real number line — the real numbers
are complete.

For example, we can use it to prove that 8
√

147 exists: Let S =
{x ∈ R | x8 < 147}. Then S is nonempty (e.g., 0 ∈ S) and bounded
above (e.g., 50 is an upper bound) and so it must have a supremum `.
A proof similar to (but even messier than) the proof of Proposition 5.2
above shows that ` satisfies `8 = 147.

The completeness axiom is also at the core of the Intermediate Value
Theorem and many of the other major theorems we will cover in this
class.

6. Wednesday, February 10

We now discuss a few consequence of the completeness axiom.

Theorem 6.1. If x is any real number, then there exists a natural
number n such that n > x.

This looks really stupid at first. How could it be false? But consider:
there are examples of ordered fields, i.e. situations in which Axioms
1–10 hold, in which this Theorem is not true! So, its proof must rely
on the Completeness Axiom.

Proof. Let x be any real number. By way of contradiction, suppose
there is no natural number n such that n > x. That is, suppose that
for all n ∈ N, n ≤ x. Then N is a bounded above (by x). Since it is
also clearly nonempty, by the Completeness Axiom, N has a supremum,
call it `. Consider the number y := ` − 1. Since y < ` and ` is the
supremum of N, y cannot be an upper bound of N. So, there must be
some m ∈ N such that such that `− 1 < m. But then by adding 1 to
both sides of this inequality we get ` < m + 1 and, since m + 1 ∈ N,
this contradicts that assumption that ` is the supremum of N.

We conclude that, given any real number x, there must exist a nat-
ural number n such that n > x. �

Corollary 6.2 (Archimedean Principle). If a ∈ R, a > 0 and b ∈ R,
then for some natural number n we have na > b.

“No matter how small a is and how large b is, if we add a to itself
enough times, we can overtake b.”

Proof. We apply Theorem 6.1 to the real number x = b
a
. It gives that

there is a natural number n such that n > x = b
a
. Since a > 0, upon

multiplying both sides by a we get n · a > b. �
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Corollary 6.3 (Density of the Rational Numbers). Between any two
distinct real numbers there is a rational number; more precisely, if
x, y ∈ R and x < y, then there exists q ∈ Q such that x < q < y.

Proof. We will prove this by consider two cases: x ≥ 0 and x < 0.
Let us first assume x ≥ 0. We apply the Archimedean Principle

using a = y − x and b = 1. (The Principle applies as a > 0 since
y > x.) This gives us that there is a natural number n ∈ N such that

n · (y − x) > 1

and thus

0 <
1

n
< y − x.

Since 1
n
> 0, using the Archimedean principle again, there is at least

one natural number p such that p · 1
n
> x. By the Well Ordering Axiom,

there is a smallest natural number such that m · 1
n
> x; call it m.

We claim that m−1
n
≤ x. Indeed, if m > 1, then m − 1 ∈ N r S

(because m− 1 is less than the minimum), so m−1
n
≤ x; if m = 1, then

m− 1 = 0, so m−1
n

= 0 ≤ x.
So, we have

m− 1

n
≤ x <

m

n
By adding 1

n
to both sides of m−1

n
≤ x and using that 1

n
< y − x, we

get
m

n
≤ x+

1

n
< x+ (y − x) = y

and hence
x <

m

n
< y.

Since m
n

is clearly a rational number, this proves the result in this case
(when x > 0).

We now consider the case x < 0. The idea here is to simply “shift”
up to the case we’ve already proven. By Theorem 6.1, we can find
a natural number j such that j > −x and thus 0 < x + j < y + j.
Using the first case, which we have already proven, applied to the
number x+j (which is positive), there is a rational number q such that
x + j < q < y + j. We deduce that x < q − j < y, and, since q − j is
also rational, this proves the corollary in this case. �

Let me say a bit more about the density of the rationals: it is a
consequence of this result that between any two distinct real numbers
there are infinitely many rational numbers: For if x, y ∈ R and x < y,
them by the Corollary there is a rational number q1 with x < q1 < y.
But then we can apply the Corollary again using x and q1, to obtain
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the existence of a rational number q2 with x < q2 < q1, and yet again
using x and q2 to obtain q3 ∈ Q with x < q3 < q2, and so on forever.

A real number is called irrational if it is not rational. For example,√
2 is irrational, a fact we have proven: we proved it exists as a real

number, using the axioms, and earlier we showed that it cannot be
rational.

Corollary 6.4 (Density of the Irrational Numbers). Between any two
distinct real numbers there is an irrational number; more precisely, if
x, y ∈ R and x < y, then there exists an irrational number z such that
x < z < y.

Proof. We will prove this by using the Density of the Rational Numbers
along with the fact that we know of at least one irrational number:

√
2.

Suppose x, y ∈ R and x < y. Then x −
√

2 < y −
√

2 and, by the
Density of Rational Numbers, there is a rational number q such that
x−
√

2 < q < y −
√

2. By adding though by
√

2 we obtain

x < q +
√

2 < y.

As we showed earlier, the sum of a rational and an irrational number
is always irrational. In particular, q +

√
2 is irrational. By letting

z = q +
√

2 we have proven the Corollary. �

As with rational numbers, between any two distinct real numbers
there are in fact infinitely many irrational numbers. (In particular,
there are infinitely many irrational numbers, which is not something
we’ve proven up until this point.)

Discussion Questions, February 12

(1) Let S ⊆ R be bounded above. Prove that there are infinitely
many distinct upper bounds for S.

Let S ⊆ R be bounded above. Let b be an upper bound
for S. For any n ∈ N, b+ n is an upper bound for S, since,
given s ∈ S, we have s ≤ b ≤ b + n. As the set of numbers
of the form b + n for n ∈ N is infinite, we have exhibited
infinitely many upper bounds.

(2) Let S ⊆ R be nonempty and bounded above. Let T = {3x | x ∈ S}.
Prove that sup(T ) = 3 sup(S).

(3) Compute the supremum of the set S = {2n−1
n+1

| n ∈ N}, and
prove your answer is correct.
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We will show that 2 is the supremum of this set.
First we show that 2 is an upper bound. Let s ∈ S.

We can write s = 2n−1
n+1

for some n ∈ N. We then have

s = 2n−1
n+1
≤ 2n+2

n+1
= 2, as required.

Now, let b be an upper bound for S. We need to show
that b ≥ 2. To obtain a contradiction, suppose that b < 2,
and let ε = 2 − b. We will show that there exists some
element of s that is greater than b, which will be the desired
contradiction. Since ε > 0, by Theorem 5.1, there exists
n ∈ N such that n > 3

ε
. Multiplying both sides by ε

n
, this

implies that ε > 3
n
. Then, 2n−1

n+1
= 2− 3

n+1
> 2− 3

n
> 2−ε =

b. This contradicts that b is an upper bound for S, so we
must have b ≥ 2, as required.

7. Monday, February 15

We will move on to next main topic of this class soon: sequences.
But first, it is useful to talk a bit about absolute values.

Definition 7.1. If x is any real number we define the absolute value
of x, written |x|, to be the real number

|x| =

{
x if x ≥ 0 and

−x if x < 0.

Proposition 7.2. Let x and y be arbitrary real numbers and let k be
a positive real number (k > 0). Then

(1) −|x| ≤ x ≤ |x|,
(2) | − x| = |x| and |x− y| = |y − x|,
(3) |x| ≤ k if and only if −k ≤ x ≤ k,
(4) |x| ≥ k if and only if x ≤ −k or x ≥ k, and
(5) |x · y| = |x| · |y|.

We won’t prove this proposition in full since each statement is just
an easy application of the definiton. But, to get a feeling for how each
part is proven, let’s prove one of them, part (3):

Proof of Part (3) of the Proposition. (⇒) Suppose |x| ≤ k. We con-
sider two cases:

Case I: If x ≥ 0 then by definition |x| = x and hence by assumption
x = |x| ≤ k. The inequality −k ≤ x also holds, since k ≥ 0 and hence
−k ≤ 0 and we are assuming x ≥ 0. Thus −k ≤ x ≤ k in this case.
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For the other case, assume now that x < 0. Then |x| = −x and
so by assumption we have −x < k. Multiplying through by −1 gives
−k < x. The inequality x < k also holds since we are assuming x < 0
for this case and 0 ≤ k. So −k < x < k holds in this case too.

(⇐) Suppose −k ≤ x ≤ k. We again consider two cases: If x ≥ 0,
then |x| = x and so |x| ≤ k is immediate. If x < 0, then |x| = −x.
From −k ≤ x we get −x ≤ k and thus |x| ≤ k. �

It will be important for us to interpret absolute values in terms of
distance. For any two real numbers x and y, the number |x− y| is the
distance between them. By the Proposition |x− y| = |y− x|, which in
geometric language says that the distance from x to y is the same as
the distance from y to x.

Example 7.3. The set of all real numbers x such that |x − 7| ≤ 2 is
the closed interval [5, 9]. To see this using the Proposition, note that
|x−7| ≤ 2 if and only if −2 ≤ x−7 ≤ 2 by Part (3). Now add through
by 7 to get 5 ≤ x ≤ 9. So {x ∈ R | |x − 7| ≤ 2} = {x ∈ R | 5 ≤ x ≤
9} = [5, 9].

Similarly, the set of all real numbers x such that |x − 7| < 2 is the
open interval (5, 9).

Theorem 7.4 (The Triangle Inequality). For any real numbers a and
b we have

|a+ b| ≤ |a|+ |b|.

Remark 7.5. You might recall that vector form of the triangle inequality
says ‖~v + ~w‖ ≤ ‖~v‖+ ‖~w‖, where ‖ − ‖ refers to the length of vectors.
This version has a nice interpretation in terms of lengths of the sides
of a triangle.

For ordinary numbers x, y, z, there is a version of this coming from
the triangle inequality: Since (x−y)+(y−z) = (x−z), taking a = x−y
and b = y − z in the Triangle Inequality gives

|x− z| ≤ |x− y|+ |y − x|
which can be interpreted as “this distance from x to z is at most the
sum of the distances from x to y and from y to z”.

Proof. Let a and b be any real numbers. Part (1) of the previous
Proposition gives

−|a| ≤ a ≤ |a| and − |b| ≤ b ≤ |b|.
We add these to get

−(|a|+ |b|) = −|a| − |b| ≤ a+ b ≤ |a|+ |b|
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Applying part (3) of the previous Proposition (with k = |x| + |y| and
the x in that Proposition replaced by a+ b), we get

|a+ b| ≤ |a|+ |b|.
�

Remark 7.6. You can also prove the Triangle Inequality just by con-
sidering all possible cases for the signs of a, b and a+ b. But there are
(nearly) 8 such cases and so that proof is rather tedious.

Corollary 7.7 (The Reverse Triangle Inequality). For any real num-
bers x and y we have

|x− y| ≥ ||x| − |y|| .

Proof. Since x = (x − y) + y, by the ordinary Triangle Inequality we
get

|x| = |(x− y) + y| ≤ |x− y|+ |y|
and thus

|x− y| ≥ |x| − |y|.
By interchanging the roles of x and y in the preceding argument we get

|y − x| ≥ |y| − |x|
and since |x− y| = |y − x| and |y| − |x| = −(|x| − |y|), we get

|x− y| ≥ −(|x| − |y|).
Since ||x|−|y|| is either |x|−|y| or−(|x|−|y|), this proves the statement.

�

We now turn our attention to the next major topic of this class: se-
quences of real numbers. We will spend the next few weeks developing
their properties carefully and rigorously. Sequences form the founda-
tion for much of what we will cover for the rest of the semester.

Definition 7.8. A sequence is an infinite list of real numbers indexed
by N:

a1, a2, a3, . . . .

(Equivalently, a sequence is a function from N to R: the value of the
function at n ∈ N is written as an.)

We will usually write {an}∞n=1 for a sequence.

Example 7.9. To describe sequences, we will typically give a formula
for the n-th term, an, either an explicit one or a recursive one. On rare
occasion we’ll just list enough terms to make the pattern clear. Here
are some examples:
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(1) {5 + (−1)n 1
n
}∞n=1 is the sequence that starts

4,
11

2
,
14

3
,
21

4
,
24

5
, . . . .

(2) Let {an}∞n=1 be defined by a1 = 1, a2 = 1 and an = an−1 + an−2
for all n ≥ 2. This gives the sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

This is an example of a recursively defined sequence. It is the
famed Fibonacci sequence.

(3) Let {cn}∞n=1 be the sequence whose n-th term is the n-th small-
est positive prime integer:

2, 3, 5, 7, 11, 13, 17, 19, 23, . . . .

Note that here I have not really given an explicit formula for the
terms of the sequence, but it is possible to describe an algorithm
that lists every term of the sequence in order.

You have all probably seen an “intuitive” definition of the limit of a
sequence before. For example, you probably believe that

lim
n→∞

5 + (−1)n
1

n
= 5.

Let’s give the rigorous definition.

Definition 7.10. Let {an}∞n=1 be an arbitrary sequence and L a real
number. We say {an}∞n=1 converges to L provided the following condi-
tion is met:

For every real number ε > 0, there is a real number N
such that |an − L| < ε for all natural numbers n such
that n > N .

This is an extremely important definition for this class. Learn it by
heart!

The definition of convergence can be rewritten in a number of ways
to make it read better. Here is one such way:

A sequence {an}∞n=1 converges to L provided for every
real number ε > 0, there is a real number N such that
if n ∈ N and n > N , then |an − L| < ε.

In symbols, the definition is

A sequence {an}∞n=1 converges to L provided ∀ε > 0,∃N ∈ R
such that ∀n ∈ N satisfying n > N , we have |an − L| < ε.
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It’s a complicated definition — three quantifiers!
Here is what the definition is saying somewhat loosely: No matter

how small a number ε you pick, so long as it is positive, if you go far
enough out in the sequence, all of the terms from that point on will be
within a distance of ε of the limiting value L.

Example 7.11. I claim the sequence {an}∞n=1 where an = 5 + (−1)n 1
n

converges to 5. I’ll give a rigorous proof, along with some commentary
and “scratch work” within the parentheses.

Proof. Let ε > 0 be given.
(Scratch work: Given this ε, our goal is to find N so that if n > N ,

then |5+(−1)n 1
n
−5| < ε. The latter simplifies to 1

n
< ε, which in turn

is equivalent to 1
ε
< n since ε and n are both positive. So, it seems

we’ve found the N that “works”. Back to the formal proof....)
Let N = 1

ε
. Then 1

N
= ε, since ε is positive.

(Comment: We next show that this is the N that “works” in the
definition. Since this involves proving something about every natural
number that is bigger than N , we start by picking one.)

Pick any n ∈ N such that n > N . Then 1
n
< 1

N
and hence

|an − 5| = |5 + (−1)n
1

n
− 5| = |(−1)n

1

n
| = 1

n
<

1

N
= ε.

This proves that {5 + (−1)n 1
n
}∞n=1 converges to 5. �

8. Wednesday, February 17

Remark 8.1. A direct proof that a certain sequence converges to a
certain number follows the general outline:

• Let ε > 0 be given. (or, if your prefer, “Pick ε > 0.”)
• Let N = [insert appropriate expression in terms of from scratch

work here].
• Let n ∈ N be such that n > N .

• [Argument that |an − L| < ε]
• Thus {an}∞n=1 converges to L.

Example 8.2. I claim that the sequence{
2n− 1

5n+ 1

}∞
n=1

congerges to 2
5
. Again I’ll give a proof with commentary and scratch

work in parentheses.
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Proof. Let ε > 0 be given.
(Scratch work: We need n to be large enough so that∣∣∣∣2n− 1

5n+ 1
− 2

5

∣∣∣∣ < ε.

This simplifies to
∣∣ −7
25n+5

∣∣ < ε and thus to 7
25n+5

< ε, which we can

rewrite as 7
25ε
− 1

5
< n.)

Let N = 7
25ε
− 1

5
. We solve this equation for ε: We get 7

25ε
= 5N+1

5

and hence 25ε
7

= 5
5N+1

, which gives finally

ε =
7

25N + 5
.

(Next we show this value of N works....)
Now pick any n ∈ N is such that n > N . Then∣∣∣∣2n− 1

5n+ 1
− 2

5

∣∣∣∣ =

∣∣∣∣10n− 5− 10n− 2

25n+ 5

∣∣∣∣ =
7

25n+ 5
.

Since n > N , 25n+ 5 > 25N + 5 and hence

7

25n+ 5
<

7

25N + 5
= ε.

We have proven that if n ∈ N and n > N , then∣∣∣∣2n− 1

5n+ 1
− 2

5

∣∣∣∣ < ε.

This proves
{

2n−1
5n+1

}∞
n=1

converges to 2
5
. �

Definition 8.3. We say a sequence {an}∞n=1 converges or is convergent
if there is (at least one) number L such that it converges to L. Other-
wise, of no such L exists, we say the sequence diverges or is divergent.

(We’ll show soon that if a sequence converges to a number L, then
L is the only number to which in converges.)

Example 8.4. Let’s prove the sequence {(−1)n}∞n=1 is divergent. This
means that there is no L to which it converges.

Proof. We proceed by contradiction: Suppose the sequence did con-
verge to some number L. Our strategy will be to derive a contradic-
tion by showing that such an L would have to satisfy mutually exclusive
conditions.

By definition, since the sequence converges to L, we have that for
every ε > 0 there is a number N such that |(−1)n − L| < ε for all
natural numbers n such that n > N . In particular, this statement is
true for the particular value ε = 1

2
. That is, there is a number N such
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that |(−1)n − L| < 1
2

for all natural numbers n such that n > N . Let
n be any even natural number that is bigger than N . (Certainly one
exists: we know there is an integer bigger than N by Theorem 6.1.
Pick one. If it is even, take that to be n. If it is odd, increase it by one
to get an even integer n.) Since (−1)n = 1 for an even integer n, we
get

|1− L| < 1

2
and thus 1

2
< L < 3

2
.

Likewise, let n be an odd natural number bigger than N . Since
(−1)n = −1 for an odd integer n, we get

| − 1− L| < 1

2

and thus −3
2
< L < −1

2
. But it cannot be that both L > 1

2
and

L < −1
2
.

We conclude that no such L exists; that is, this sequence is divergent.
�

Proposition 8.5. If a sequence converges, then there is a unique num-
ber to which it converges.

Proof. Recall that to show something satisfying certain properties is
unique, one assumes there are two such things and argues that they
must be equal. So, suppose {an}∞n=1 is a sequence that converges to L
and that also converges to M . We will prove L = M .

By way of contradiction, suppose L 6= M . Then set ε = |L−M |
3

. Since
we are assuming L 6= M , we have ε > 0. According to the definition of
convergence, since the sequence converges to L, there is a real number
N1 such that for n ∈ N such that n > N1 we have

|an − L| < ε.

Also according to the definition, since the sequence converges to M ,
there is a real number N2 such that for n ∈ N and n > N2 we have

|an −M | < ε.

Pick n to be any natural number larger than max{N1, N2} (which exists
by Theorem 6.1. For such an n, both |an − L| < ε and |an −M | < ε
hold. Using the triangle inequality and these two inequalities, we get

|L−M | ≤ |L− an|+ |M − an| < ε+ ε.

But by the choice of ε, we have ε + ε = 2
3
|L −M |. That is, we have

deduced that |L −M | < 2
3
|L −M | which is impossible. We conclude

that L = M . �
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9. Friday, February 19

From now on, given a sequence {an}∞n=1 and a real number L, will
we use the short-hand notation

lim
n→∞

an = L

to mean that the given sequence converges to the given number. For
example, we showed above that

lim
n→∞

2n− 1

5n+ 1
=

2

5
.

But, to be clear, the statement “limn→∞ an = L” signifies nothing more
and nothing less than the statement “{an}∞n=1 converges to L”.

Here is some terminology we will need:

Definition 9.1. Suppose {an}∞n=1 is any sequence.

(1) We say {an}∞n=1 is bounded above if there exists at least one real
number M such that an ≤ M for all n ∈ N; we say {an}∞n=1 is
bounded below if there exists at least one real number m such
that an ≥ m for all n ∈ N; and we say {an}∞n=1 is bounded if it
is both bounded above and bounded below.

(2) We say {an}∞n=1 is increasing if for all n ∈ N, an ≤ an+1; we say
{an}∞n=1 is decreasing if for all n ∈ N, an ≥ an+1; and we say
{an}∞n=1 is monotone if it is either decreasing or increasing.

(3) We say {an}∞n=1 is strictly increasing if for all n ∈ N, an < an+1.
I leave the definition of strictly decreasing and strictly monotone
to your imaginations.

Remark 9.2. Be sure to interpret “monotone” correctly. It means

(∀n ∈ N, an ≤ an+1) or (∀n ∈ N, an ≥ an+1) ;

it does not mean

∀n ∈ N, (an ≤ an+1) or (an ≥ an+1) .

Do you see the difference?

Example 9.3. The sequence { 1
n
}∞n=1 is strictly increasing and bounded

(above by, e.g., 1 and below by, e.g., 0).
The Fibonacci sequence {fn}∞n=1 = 1, 1, 2, 3, 5, 8, . . . is strictly in-

creasing and bounded below, but not bounded above.
The sequence {5 + (−1)n 1

n
}∞n=1 is not monotone, but it is bounded

(above by, e.g., 6 and below by, e.g., 4).

Is the sequence of quotients of Fibonacci numbers {fn+1

fn
}∞n=1 = 1

1
, 2
1
, 3
2
, 5
3
, 8
5
, . . .

monotone? Is it bounded? Convergent?
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10. Monday, February 22

Proposition 10.1. If a sequence {an}∞n=1 converges then it is bounded.

Proof. Suppose the sequence {an}∞n=1 converges to the number L. Ap-
plying the definition of “converges to L” using the particular value
ε = 1 gives the following fact: There is a real number N such that if
n ∈ N and n > N , then |an−L| < 1. The latter inequality is equivalent
to L− 1 < an < L+ 1 for all n > N .

Let m be any natural number such that m > N , and consider the
finite list of numbers

a1, a2, . . . , am−1, L+ 1.

Let b be the largest element of this list. I claim the sequence is bounded
above by b. For any n ∈ N, if 1 ≤ n ≤ m − 1, then an ≤ b since in
this case an is a member of the above list and b is the largest element
of this list. If n ≥ m then since m > N , we have n > N and hence
an < L + 1 from above. We also have L + 1 ≤ b (since L + 1 is in the
list) and thus an < b. This proves an ≤ b for all n as claimed.

Now take p to be the smallest number in the list

a1, a2, . . . , am−1, L− 1.

A similar argument shows that an ≥ p for all n ∈ N. �

When I introduced the Completeness Axiom, I mentioned that, heuris-
tically, it is what tells us that the real number line doesn’t have any
holes. The next result makes this a bit more precise:

Theorem 10.2. Every increasing, bounded above sequence converges.

Proof. Let {an}∞n=1 be any sequence that is both bounded above and
increasing.

(Commentary: In order to prove it converges, we need to find a
candidate number L that it converges to. Since the set of numbers oc-
curring in this sequence is nonempty and bounded above, this number
is provided to us by the Completeness Axiom.)

Let S be the set of those real numbers that occur in this sequence.
(This is technically different that the sequence itself, since sequences
are allowed to have repetitions but sets are not. Also, sequences have an
ordering to them, but sets do not.) The set S is clearly nonempty, and
it is bounded above since we assume the sequence is bounded above.
Therefore, by the Completeness Axiom, S has a supremum L. We will
prove the sequence converges to L.

Pick ε > 0. Then L − ε < L and, since L is the supremum, L − ε
is not an upper bound of S. This means that there is an element of S
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that is stricly bigger than L−ε. Every element of S is a member of the
sequence, and so we get that there is an N ∈ N such that aN > L− ε.

(We will next show that this is the N that “works”. Note that, in
the general definition of convergence of a sequence, N can be any real
number, but in this proof it turns out to be a natural number.)

Let n be any natural number such that n > N . Since the sequence
is increasing, aN ≤ an and hence

L− ε < aN ≤ an.

Also, an ≤ L since L is an upper bound for the sequence, and thus we
have

L− ε < an ≤ L.

It follows that |an − L| < ε. We have proven the sequence converges
to L. �

You will prove in the homework that any decreasing, bounded below
sequence converges. Putting this together with the previous theorem
yields the following.

Theorem 10.3 (Monotone Converge Theorem). Every bounded mono-
tone sequence converges.

Example 10.4. Consider the sequence {an}∞n=1 given by the formula

an = 1 +
1

22
+

1

32
+ · · ·+ 1

n2
.

We will use the Monotone Convergence Theorem to prove that this
sequence converges.

First, we need to see that the sequence is increasing. Indeed, for
every n we have that an+1 = an + 1

a2n+1
≥ an.

Next, we need to show that it is bounded above. Observe that

an = 1 +
1

22
+

1

32
+ · · ·+ 1

n2

≤ 1 +
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 1)n

= 1 + (
1

1
− 1

2
) + (

1

2
− 1

3
) + · · ·+ (

1

n− 1
− 1

n
)

= 1 + 1− 1

n
,

so we have an ≤ 2 for all n. This means that {an}∞n=1 is bounded above
by 2.

Hence, by the Monotone Convergence Theorem, {an}∞n=1 converges.
Leonhard Euler was particularly interested in this sequence, and was
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able to prove that it converges to π2

6
. This requires some other ideas,

so we won’t do that here.

As we have seen, proving sequences converge using just the definition
can be tedious and hard, and finding limits can be tricky. The next
very long Theorem will make the task easier in some cases.

Theorem 10.5. The following six things hold.

(1) For any real number c, the constant sequence {an}∞n=1 defined
by an = c converges to c.

(2) The sequence {1/n}∞n=1 converges to 0.

For the remaining parts, assume {an}∞n=1 and {bn}∞n=1 are any two
sequences that both converge.

(3) The sequence {an + bn}∞n=1 also converges and

lim
n→∞

(an + bn) = lim
n→∞

(an) + lim
n→∞

(bn).

(4) For any real number c, the sequence {c · an}∞n=1 also converges
and

lim
n→∞

(c · an) = c · lim
n→∞

(an).

(5) The sequence {an · bn}∞n=1 also converges and

lim
n→∞

(an · bn) = lim
n→∞

(an) · lim
n→∞

(bn).

(6) If bn 6= 0 for all n and limn→∞(bn) 6= 0, then the sequence
{an/bn}∞n=1 also converges and

lim
n→∞

(
an
bn

)
=

limn→∞(an)

limn→∞(bn)
.

Note that in the last item of the Theorem, we have to assume bn 6= 0
for all n (in order that the sequence {an/bn}∞n=1 be well defined), and
we also have to assume limn→∞(bn) 6= 0 (so that the right-hand side
makes sense). The latter assumption does not follow from the former:
for example, if bn = 1

n
then bn 6= 0 for all n but limn→∞ bn = 0.

Example 10.6. Before proving (parts of) the theorem, let us illustrate
it by redoing our justification that the sequence

{
2n−1
5n+1

}∞
n=1

converges

to 2
5
. At first blush, this looks to be impossible since {2n− 1}∞n=1 does

not converge and so the hypotheses are not met. The trick is to first
rewrite the n-th term as

2n− 1

5n+ 1
=

2− 1/n

5 + 1/n
.

By the Theorem, Part (2) the sequence {1/n}∞n=1 converges to 0 and
by Part (1) the constant sequence 5 converges to 5. So, by applying
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Part (3) of the theorem we deduce that {5 + 1/n} converges to 5.
Similarly, Parts (2) and (3) give that {−1/n}∞n=1 converges to 0 and so
by Parts (1) and (3), {2−1/n}∞n=1 converges to 2. Finally, by applying
Part (6) of Theorem we conclude that

{
2n−1
5n+1

}∞
n=1

converges to 2
5
.

Discussion Questions, February 24

• Let c be a real number, and {c}∞n=1 be the sequence where every
term is equal to c. Prove that this sequence converges to c.

• Prove that the sequence {1/n}∞n=1 converges to 0.

• Let {an}∞n=1 be a sequence that converges to L, and {bn}∞n=1

be a sequence that converges to M . Prove that {an + bn}∞n=1

converges to L+M .
[Hint: Given ε > 0, apply the definitions of “{an}∞n=1 con-

verges to L” and “{bn}∞n=1 converges to M” with the value ε
2
.]

• Let {an}∞n=1 be a sequence that converges to L, and c be a real
number. Prove that {can}∞n=1 converges to cL.

• Let {an}∞n=1 be a sequence that converges to L. Assume that
an 6= 0 for all n ∈ N and that L 6= 0. Prove that {1/an}∞n=1

converges to 1/L.

All of these are parts of Theorem 10.5. Here is a proof of all of the
parts of Theorem 10.5, with scratch work; the numbering is that of
Theorem 10.5 rather than the discussion questions.

Proof. To prove (1), pick ε > 0. Let N = 0 (or, really, any number you
want). If n ∈ N and n > N , then |an − c| = |c− c| = 0 < ε and hence
the constant sequence {c}∞n=1 converges to c.

To prove (2), we pick ε > 0. Let N = 1
ε
. If n ∈ N and n > N , then

| 1
n
− 0| = 1

n
>

1

N
= ε

and thus {1/n}∞n=1 converges to 0.
For the rest of this proof, assume {an}∞n=1 converges to L and {bn}∞n=1

converges to M .
For Part (3), we need to prove {an + bn}∞n=1 converges to L + M .

Pick ε > 0.
(“Scratch work”: We need to figure out how big n needs to be in

order that |(an+ bn)− (M +L)| < ε. Note that |(an+ bn)− (M +L)| =
|(an−M)+(bn−L)| ≤ |(an−M)|+ |(bn−L)| by the triangle inequality.
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Intuitively, we can make each of |(an −M)| and |(bn − L)| as small as
we like by taking n large enough. We need their sum to be smaller
than ε and so if we can make each of them be smaller that ε/2, we’re
golden. Back to the proof...)

Since {an}∞n=1 converges to L and ε
2

is positive, there is a number N1

such that for all n ∈ N with n > N1 we have

|an − L| <
ε

2
.

Likewise, since {bn}∞n=1 converges to M , there is a number N2 such that
for all n ∈ N with n > N2 we have

|bn −M | <
ε

2
.

Let N = max{N1, N2}. If n ∈ N and n > N , then n > N1 and n > N2

and hence we have

|an − L| <
ε

2
and |bn −M | <

ε

2
.

Using these inequalities and the triangle inequality we get

|(an+bn)−(M+L)| = |(an−M)+(bn−L)| ≤ |(an−M)|+|(bn−L)| < ε

2
+
ε

2
= ε.

This proves that {an + bn}∞n=1 converges to L+M .
Part (4) will follow from parts (1) and (5) put together, but we can

also prove it on its own. We note first that if c = 0, then can = 0 for
all n, and hence by part (1), we have {can}∞n=1 converges to 0 in this
case. Now, assume that c 6= 0, and let ε > 0 be given.

(“Scratch work”: We need n to be large enough so that |can−cL| < ε.
We can write |can− cL| = |c||an−L|, so if |an−L| < ε

|c| , we’ll be set.)

By definition of convergence, there is some N ∈ R such that |an −
L| < ε

|c| for all natural numbers n > N . (Note here that it is important

that c 6= 0; this is why we singled out the case c = 0 first.) Then, for all
natural numbers n > N , we have |can−cL| = |c||an−L| < |c|ε/|c| = ε,
as required.

For (5), we need to prove {an ·bn}∞n=1 converges to L ·M . Pick ε > 0.
(“Scratch work”: The goal is to make |anbn − LM | small and the

trick is to use that

|anbn − LM | = |an(bn −M) + (an − L)M |
≤ |an(bn −M)|+ |(an − L)M |
= |an||bn −M |+ |an − L||M |

Our goal will be to take n to be large enough so that each of |an||bn−M |
and |an − L||M | is smaller than ε/2. We can make |an − L| as small
as we like and |M | is just a fixed number. So, we can “take care” of
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the second term by chooseing n big enough so that |an − L| < ε
2|M | . A

irritating technicality here is that |M | could be 0, and so we will use
ε

2|M |+1
instead. The other term |an||bn−M | is harder to deal with since

each factor varies with n. Here we use that convergent sequence are
bounded so that we can find a real number X so that |an| ≤ X for all
n. Then we choose n large enough so that |bn −M | < ε

2X
. back to the

proof.)
Since {an} converges, it is bounded by Proposition 10.1, which gives

that there is a strictly positive real number X so that |an| ≤ X for all
n ∈ N. Since {bn} converges to M and ε

2X
> 0, there is a number N1

so that if n > N1 then |bn −M | < ε
2X

. Since {an} converges to L and
ε

2|M |+1
> 0, there is a number N2 so that if n ∈ N and n > N2, then

|an − L| < ε
2|M |+1

. Let N = max{N1, N2}. For any n ∈ N such that

n > N , we have

|anbn − LM | = |an(bn −M) + (an − L)M |
≤ |an(bn −M)|+ |(an − L)M |
= |an||bn −M |+ |an − L||M |

< X
ε

2X
+

ε

2|M |+ 1
|M |

< ε.

This proves {an · bn}∞n=1 converges to L ·M .
To prove Part (6), we first prove a slightly weaker statement:
Claim: If the sequence {bn}∞n=1 converges to M , bn 6= 0 for all n and

M 6= 0, then the sequence { 1
bn
}∞n=1 converges to 1

M
.

To prove this claim, pick ε > 0.

(Scratch work: We want to show
∣∣∣ 1
bn
− 1

M

∣∣∣ < ε holds for n sufficiently

large. We have ∣∣∣∣ 1

bn
− 1

M

∣∣∣∣ =
|M − bn|
|bn||M |

.

We can make the top of this fraction as small as we like, but the
problem is that the bottom might be very small too since bn might
get very close to 0. But since bn converges to M and M 6= 0 if we go
far enough out, it will be close to M . In particular, if bn is within a

distance of |M |
2

of M then |bn| will be at least |M |
2

. So for n sufficiently

large we have |bn−M ||bn||M | < 2 |bn−M ||M |2 . And then for n sufficiently large we

also get |bn −M | < |M |2
2ε

. Back to the formal proof....)

Since {bn} converges to M and |M |
2
> 0, there is an N1 such that for

n > N1 we have |bn −M | < |M |
2

and hence |bn| > |M |
2

. Again using
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that {bn} converges to M and that ε|M |2
2

> 0, there is an N2 so that for

n > N2 we have |bn −M | < ε|M |2
2

. Let N = max{N1, N2}. If n > N ,
then we have ∣∣∣∣ 1

bn
− 1

M

∣∣∣∣ =
|bn −M |
|bn||M |

<
2

|M |
|bn −M |
|M |

= 2
|bn −M |
|M |2

since |bn| > |M |/2 and hence 1
|bn| <

2
|M | . But then

2
|bn −M |
|M |2

< 2
ε|M |2

2

|M |2
= ε

since |bn −M | < ε|M |2
2

. Putting these together gives∣∣∣∣ 1

bn
− 1

M

∣∣∣∣ < ε

for all n > N . This proves { 1
bn
}∞n=1 converges to 1

M
.

We have proven the claim. To finish the proof of (6), we use the
claim and apply (5) to the convergent sequences {an} and {1/bn}. �

11. Friday, February 26

The following is another useful technique:

Theorem 11.1 (The “squeeze” principle). Suppose {an}∞n=1, {bn}∞n=1

and {cn}∞n=1 are three sequences such that

• {an}∞n=1 converges to L,
• {cn}∞n=1 also converges to L (same value), and
• there is a real number M such that an ≤ bn ≤ cn for all n ∈ N

such that n > M .

Then {bn}∞n=1 also converges to L,.

The heuristic version of this theorem is:

If limn→∞ an = L = limn→∞ cn and bn is “eventually”
between an and cn, then limn→∞ bn = L too.

Remark 11.2. Our text assumes an ≤ bn ≤ cn holds for all n ∈ N in its
version of this theorem; i.e, it assumes “the bn’s are trapped between
the an’s and the cn’s all the time”. The version I’ve stated here applies
to more situations and is only slighlty harder to prove.
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Example 11.3. Let us show { (−1)
n

n
}∞n=1 converges to 0 using the Squeeze

Theorem. Note that Theorem 10.5 alone cannot be used in this exam-
ple. But for all n we have

−1

n
≤ (−1)n

n
≤ 1

n
and Theorem 10.5 does give that

lim
n→∞

1

n
= 0 and lim

n→∞

−1

n
= − lim

n→∞

1

n
= 0.

By the Squeeze Theorem, we conclude limn→∞
(−1)n
n

= 0.

Proof. Assume {an}∞n=1 and {cn}∞n=1 both converge to L and that there
is a real number M such that an ≤ bn ≤ cn for all n ∈ N such that
n > M . We need to prove {bn}∞n=1 converges to L.

Pick ε > 0. Since {an}∞n=1 converges to L there is a number N1 such
that if n ∈ N and n > N1 then |an−L| < ε and hence L−ε < an < L+ε.
Likewise, since {cn}∞n=1 converges to L there is a number N2 such that
if n ∈ N and n > N2 then L− ε < cn < L+ ε. Let

N = max{N1, N2,M}
where M is defined as in the statement of the Theorem. If n ∈ N and
n > N , then n > N1 and hence L − ε < an, and n > N2 and hence
cn < L+ε, and n > M and hence an < bn < cn. Combining these facts
gives that for n ∈ N such that n > N , we have

L− ε < bn < L+ ε

and hence |bn − L| < ε. This proves {bn}∞n=1 converges to L. �

End of material for exam 1

12. Monday, March 1

Here is a corollary of the Squeeze Theorem that is sometimes handy.

Corollary 12.1. (1) If the sequence {an}∞n=1 converges to 0, then
the sequence {|an|}∞n=1 also converges to 0.

(2) If {an}∞n=1 converges to 0 and {bn}∞n=1 is any bounded sequence,
then {anbn}∞n=1 converges to 0.

Proof. (1) Assume {an}∞n=1 converges to 0. We need to prove {|an|}∞n=1

converges to 0. Pick ε > 0. Since {an}∞n=1 converges to 0, there
is a number N such that if n ∈ N and n > N , then |an−0| < ε.
For this same N , if n > N then

||an| − 0| = ||an|| = |an| < ε.
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This proves {|an|}∞n=1 converges to 0.
(2) Since {bn} is bounded, there is a positive real number X such

that |bn| ≤ X for all n. Thus 0 ≤ |anbn| ≤ X|an| holds for all n
and hence

−X|an| ≤ anbn ≤ X|an|
holds for all n. By the Lemma, since {an}∞n=1 converges to 0,
so does {|an|}∞n=1. Using Theorem 10.5, we get that {X|an|}∞n=1

and {−X|an|}∞n=1 also both converge to 0. Finally, by the
Squeeze Theorem, {anbn}∞n=1 converges to 0 too. �

Remark 12.2. More generally, if {an}∞n=1 converges to L, then the se-
quence {|an|}∞n=1 also converges to |L|, but I will not take the time to
prove this now. The converse of this statement is false however. For ex-
ample, consider the sequence {(−1)n}∞n=1. The sequence {|(−1)n|}∞n=1

is the constant sequence 1 and hence it converges to 1, but the original
sequence diverges.

Example 12.3. This Corollary gives another way to prove {(−1)n/n}
converges to 0: take bn = (−1)n and an = 1/n.

We will discuss a bit the notion of “diverging to infinity”, a concept
that you might have seen before in Calculus.

It is sometimes useful to distinguish between sequences like

{(−1)n}∞n=1

that diverge because they “oscillate”, and sequences like

{n}∞n=1

that diverge because they “head toward infinity”.

Definition 12.4. A sequence {an}∞n=1 diverges to ∞ if for every real
number M , there is a real number N such that if n ∈ N and n > N ,
then we have an > M .

A sequence {an}∞n=1 diverges to −∞ if for every real number L, there
is a real number N such that if n ∈ N and n > N , then an < L.

Intuitively, a sequence diverges to ∞ provided that, no matter how
big M is, if you go far enough along the sequence, eventually all of the
terms are bigger than M . Similarly for diverges to −∞.

Proposition 12.5. If a sequence {an}∞n=1 diverges to ∞ or diverges to
−∞, then it diverges.

Proof. We prove the contrapositive. (What is the contrapositive? If
a sequence converges, then it does not diverge to ∞ and it des not
diverge to −∞.) Suppose {an}∞n=1 converges to some number L. Then
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since it converges, it is bounded, so that there are real numbers b and
c such that b ≤ an ≤ c for all n.

In particular, this means that there is no N ∈ R such that an > c for
all natural numbers n > N . Thus, taking “M = c” in the definition of
diverges to ∞, we see that {an}∞n=1 does not diverge to ∞.

Similarly, that there is no N ∈ R such that an < b for all natural
numbers n > N . Thus, taking “M = b” in the definition of diverges to
−∞, we see that {an}∞n=1 does not diverge to −∞. �

As a matter of shorthand, we write limn→∞ an =∞ to indicate that
{an}∞n=1 diverges to ∞. But note unlike when we wrote things such as
limn→∞ an = 17, when we write limn→∞ an = ∞ we are asserting that
{an}∞n=1 diverges (in a specific way). Similarly, we write limn→∞ an =
−∞ to indicate that {an}∞n=1 diverges to −∞.

Example 12.6. The sequence {
√
n}∞n=1 diverges to ∞. Let us prove

this using the definition: Pick M ∈ R. (Scratch work: I need
√
n > M

which will occur if n > M2. ) Let N = M2. If n ∈ N and n > N , then√
n >

√
N =

√
M2 = |M | ≥ M . (Note that M could conceivably be

negative.) This proves {
√
n}∞n=1 diverges to ∞.

Example 12.7. Take the sequence {an}∞n=1 given by

an = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

This is known as the “harmonic series”. We will show that this sequence
diverges to ∞.

Observe that

an = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·

≥ 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·

= 1 +
1

2
+ 2 · 1

4
+ 4 · 1

8
+ · · · .

For most natural numbers n, it may be a little messy to deal with
the last terms in the sum. But, if k ∈ N, and n = 2k, we can do this
nicely:
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an = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ · · ·+ 1

2k

≥ 1 +
1

2
+

(
1

22
+

1

22

)
+

(
1

23
+ · · ·+ 1

23

)
︸ ︷︷ ︸

from 22 + 1 to 23

+ · · ·+
(

1

2k
+ · · ·+ 1

2k

)
︸ ︷︷ ︸
from 2k−1 + 1 to 2k

= 1 +
1

2
+ 21 · 1

22
+ 22 · 1

23
+ · · ·+ 2k−1 · 1

2k
= 1 +

k

2
.

Let M ∈ R be given. Let M ′ be the smallest natural number greater
than M (why does such a number exist?) and take N = 22M ′ . By the
computation above, taking k = 2M ′, we see that aN ≥ 1 + 2M ′

2
. Then,

for n > N , since {an}∞n=1 is an increasing sequence, we have

an ≥ aN ≥ 1 +
2M ′

2
= M ′ + 1 > M ′ > M,

which shows that {an}∞n=1 diverges to ∞.

Discussion Questions, March 3

TRUE or FALSE. Justify.

(1) Let x, y ∈ R. The negation of the statement “If x and y are
rational, then xy is rational” is “If x and y are rational, then
xy is irrational”. (F)

(2) Let x, y ∈ R. The contrapositive of the statement “If x and y
are rational, then xy is rational” is “If xy is irrational, then x
and y are irrational”. (F)

(3) The associative property/axiom of addition says that (x+ y) +
z = x+ (y + z). (T)

(4) Every set of real numbers that is bounded above has a supre-
mum. (F)

(5) There is a set S of real numbers such that sup(S) exists, but
sup(S) /∈ S. (T)

(6) If a < b are real numbers, there is a natural number n ∈ N such
that a < n < b. (F)
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(7) Every nonempty set of real numbers has a smallest element (i.e.,
a minimum element). (F)

(8) Every nonempty set of integers that is bounded below has a
smallest element (i.e., a minimum element). (T)

(9) If S ⊆ R is bounded above, there there is a natural number b
such that b is an upper bound for S. (T)

(10) It is possible to prove that there is a real number x such that
x2 = 2 using just the first 10 axioms (i.e., without using the
Completeness Axiom). (F)

(11) Every set of real numbers satisfies the property that “for all
x ∈ S, there exists a real number y such that x < y2 ”. (T)

(12) Every set of real numbers satisfies the property that “for all
x ∈ S, there exists a real number y such that y2 < x”. (F)

(13) The supremum of the set {1/n | n ∈ N} is 1. (T)

(14) The supremum of the set {−1/n | n ∈ N} is −1. (F)

(15) The negation of the statement “for all x ∈ S, there exists a real
number y such that x < y2 ” is “for all x ∈ S, there exists a
real number y such that x ≥ y2 ”. (F)

(16) If a sequence {an}∞n=1 converges to L, then there is some N ∈ R
such that for all natural numbers n > N , an = L. (F)

(17) For every real number L there is a sequence that converges to L.
(T)

(18) For every real number L there is a sequence {an}∞n=1 such that
an 6= L for all n ∈ N and converges to L. (T)

(19) A sequence of positive numbers can converge to a negative num-
ber. (F)

(20) A sequence of positive numbers can converge to zero. (T)

(21) Every increasing sequence is bounded below. (T)
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(22) Every increasing sequence is convergent. (F)

(23) Every convergent sequence is either increasing or decreasing.
(F)

(24) If {an}∞n=1 and {bn}∞n=1 are sequences, {an}∞n=1 converges to L,
and there is some N ∈ R such that an = bn for n > N , then
{bn}∞n=1 converges to L. (T)

(25) If {an}∞n=1 and {bn}∞n=1 are convergent sequences, then {an +
bn}∞n=1 is a convergent sequence. (T)

(26) If {an}∞n=1 and {bn}∞n=1 are convergent sequences, and bn 6= 0
for all n ∈ N, then {an/bn}∞n=1 is a convergent sequence. (F)

(27) The sequence

{
3n2 − 4n+ 7

6n2 + 1

}∞
n=1

converges to 1/2. (T)

(28) The negation of “{an}∞n=1 is a monotone sequence” is “there
exists n ∈ N such that an > an+1 and an < an+1”. (F)

(29) Every convergent sequence of rational numbers converges to a
rational number. (F)

(30) Every convergent sequence of natural numbers converges to a
natural number. (T)

13. Monday, March 8

We will now embark on a bit of detour. I’ve postponed talking about
proofs by induction, but we will need to use that technique on occasion.
So let’s talk about that idea now.

The technique of proof by induction is used to prove that an infinite
sequence of statements indexed by N

P1, P2, P3, . . .

are all true. For example, for any real number x, the equation

(1− x)(1 + x+ · · ·+ xn) = 1− xn+1

holds for all n ∈ N. Fixing x, we get one statement for each natural
number:
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P1 : (1− x)(1 + x) = 1− x2

P2 : (1− x)(1 + x+ x2) = 1− x3

P3 : (1− x)(1 + x+ x2 + x3) = 1− x4

...
...

Such a fact (for all n) is well-suited to be proven by induction.
Here is the general principle:

Theorem 13.1 (Principle of Mathematical Induction). Suppose we are
given, for each n ∈ N, a statment Pn. Assume that P1 is true and that
for each k ∈ N, if Pk is true, then Pk+1 is true. Then Pn is true for all
n ∈ N.

“The domino analogy”: Think of the statements P1, P2, . . . as domi-
noes lined up in a row. The fact that Pk =⇒ Pk+1 is interpreted
as meaning that the dominoes are arranged well enough so that if one
falls, then so does the next one in the line. The fact that P1 is true
is interpreted as meaning the first one has been knocked over. Given
these assumptions, for every n, the n-th domino will (eventually) fall
down.

The Principle of Mathematical Induction (PMI) is indeed a theorem,
which we will now prove:

Proof. Assume that P1 is true and that for each k ∈ N, if Pk is true,
then Pk+1 is true. Consider the subset

S = {n ∈ N | Pn is false}
of N. Our goal is to show S is the empty set.

By way of contradiction, suppose S is not empty. Then by the Well-
Ordering Principle, S has a smallest element, call it `. (In other words,
P` is the first statement in the list P1, P2, . . . , that is false.) Since P1

is true, we must have ` > 1. But then `− 1 < ` and so `− 1 is not in
S. Since ` > 1, we have `− 1 ∈ N and thus we can say that P`−1 must
be true. Since Pk ⇒ Pk+1 for any k, letting k = ` − 1, we see that,
since P`−1 is true, P` must also by true. This contradicts the fact that
` ∈ S. We conclude that S must be the empty set. �

Remark 13.2. The above proof shows that the Principle of Mathemat-
ical Induction is a consequence of the Well-Ordering Principle. The
converse is also true.

Example 13.3. For any n ∈ N, if S is a set with n elements, then
there are 2n possible subset of S (including the empty set and S itself).
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To prove this, we let Pn be the statement: If a set has n elements,
then it has 2n subsets.

The statement P1 is true since a one element set has 2 subsets: itself
and the empty set. Let k ∈ N and assume Pk is true. Let S be any set
with k+ 1 elements, and let x be one of its elements. Let S ′ = S \ {x}.
There are two types of subsets of S: those that contain x and those
that don’t or, equivalently, those that are contained in S ′ and those
that are not.

Since Pk is true and S ′ has k elements, there are 2k subsets of S ′.
That is, there are 2k subsets of S that don’t contain x. Now, every
subset of S that does contain x has the form {x} ∪ X for a unique
subset X of S ′. Thus there are also 2k subsets of S that do contain x.
In total, there are thus 2k + 2k = 2k+1 subsets of S. That is, Pk+1 is
true.

By PMI, Pn is true for all n.

Example 13.4. What is wrong with the following “proof by induc-
tion”:

I claim that all horses are of the same color. To prove
this, I will show that for every set of n horses, all the
horses in that set have the same color.

This is clearly true when n = 1. Let n ∈ N and
assume it is true for any set of n horses. Now consider an
arbitrary set of n+ 1 horses, call them h1, h2, . . . , hn+1.
Divide this set into two subsets of n horses each, namely
h1, h2, . . . , hn and h2, h3, . . . , hn+1. By induction, each of
these two sets of horses are all of the same color. But
then since h2 belongs to both sets, it follows that all
the horses in the full list h1, . . . , hn+1 must be all of the
same color.

By PMI, for any n ∈ N, all sets of n horses have the
same color. Thus all horses have the same color.

14. Wednesday, March 9

I want to briefly discuss the relationship between induction and re-
cursion, in the sense of recursively defined sequences. Recall that one
way of describing a sequence is by a pair of formulas: one that gives a
value for a1, and another that gives a value for an+1 in terms of an. The
fact that such a pair of formulas yields a well-defined value of an for
every n ∈ N is justified by induction. If we take Pn to be the statement
that “the formulas determine a unique value for an”, then P1 is true
since we have a given value for a1, and Pn is true implies that Pn+1 is
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true, since we have a formula for an+1 in terms of an. By induction, Pn
is true for all n ∈ N.

The next example of a proof by induction will establish a fact that
is perhaps intuitively obvious. Since it will play an important role in
later proofs, we state it as a Lemma here:

Lemma 14.1. Let b1, b2, . . . be any strictly increasing sequence of nat-
ural numbers; that is, assume bk ∈ N for all k ∈ N and that bk < bk+1

for all k ∈ N. Then bk ≥ k for all k.

Proof. Suppose b1, b2, . . . is a strictly increasing sequence of natural
numbers. We prove bn ≥ n for all n by induction on n. That is, for
each n ∈ N, let Pn be the statement that bn ≥ n.
P1 is true since b1 ∈ N and so b1 ≥ 1. Given k ∈ N, assume Pk is

true; that is, assume bk ≥ k. Since bk+1 > bk and both are natural
numbers, we have bk+1 ≥ bk + 1 ≥ k + 1; that is, Pk+1 is true too. By
PMI, Pn is true for all n ∈ N. �

We next discuss the important concept of a “subsequence”.
Informally speaking, a subsequence of a given sequence is a sequence

one forms by skipping some of the terms of the original sequence. In
other words, it is a sequence formed by taking just some of the terms
of the original sequence, but still infinitely many of them, without
repetition.

We’ll cover the formal definition soon, but let’s give a few examples
first, based on this informal definiton.

Example 14.2. Consider the sequence

an =

{
7 if n is divisible by 3 and
1
n

if n is not divisible by 3.

If we pick off every third term starting with the term a3 we get the
subsequence

a3, a6, a9, . . .

which is the constant sequence

7, 7, 7, . . . .

If we pick off the other terms we form the subsequence

a1, a2, a4, a5, a7, a8, a10, . . .

which gives the sequence

1,
1

2
,
1

4
,
1

5
,
1

7
,
1

9
,

1

10
, . . . .

Note that it is a little tricky to find an explicit formula for this sequence.
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Example 14.3. For another, simpler, example, consider the sequence
{(−1)n 1

n
}∞n=1. Taking just the odd-indexed terms gives the sequence

−1,−1

3
,−1

5
,−1

7
,−1

9
, . . .

and taking the even-indexed terms gives the sequence

1

2
,
1

4
,
1

6
,
1

8
, . . .

This time we can easily give a formula for each of these sequences: the
first is

{− 1

2n− 1
}∞n=1

and the second is

{ 1

2n
}∞n=1.

Here is the formal definiton:

Definition 14.4. A subsequence of a given sequence {an}∞n=1 is any
sequence of the form

{ank
}∞k=1

where
n1, n2, n3, . . .

is any strictly increasing sequence of natural numbers — that is nk ∈ N
and nk+1 > nk for all k ∈ N, so that

n1 < n2 < n3 < · · · .

Example 14.5. Let {an}∞n=1 be any sequence.
Setting nk = 2k − 1 for all k ∈ N gives the subsequence of just the

odd-indexed terms of the original sequence.
Setting nk = 2k for all k ∈ N gives the subsequence of just the

even-indexed terms of the original sequence.
Setting nk = 3k − 2 for all k ∈ N gives the subsequence of consising

of every third term of the original sequence, starting with the first.
Setting nk = 100 + k gives the subsequence that is that “tail end” of

the original, obtained by skipping the first 100 terms:

a101, a102, a103, a104, . . . .

Of course, there is nothing special about 100 in this example.

The following result is important:

Theorem 14.6. If a sequence {an}∞n=1 converges to L, then every sub-
sequence of this sequence also converges to L.
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Proof. Assume {an}∞n=1 converges to L and let n1 < n2 < · · · be any
strictly increasing sequence of natural numbers. We need to prove
{ank
}∞k=1 converges to L.

Pick ε > 0. Since {an}∞n=1 converges to L, there is an N such that if
n ∈ N and n > N , then |an − L| < ε. (We will show that the same N
also “works” for the subsequence.)

If k ∈ N and k > N , then nk ≥ k by Lemma 14.1, and hence nk > N .
It follows that |ank

−L| < ε. This proves {ank
}∞k=1 converges to L. �

Corollary 14.7. Let {an}∞n=1 be any sequence.

(1) If there is a subsequence of this sequence that diverges, then the
sequence itself diverges.

(2) If there are two subsequence of this sequence that converge to
different values, then the sequence itself diverges.

Proof. These are both immediate consequences of the theorem. �

Example 14.8. Consider the sequence

an =

{
7 if n is divisible by 3 and
1
n

if n is not divisible by 3.

Let nk = 3k. Then the subsequence {ank
}∞k=1 is

a3, a6, a9, . . .

which is the constant sequence

7, 7, 7, . . . .

It converges to 7.
Now let nk = 3k − 2. Then the subsequence {ank

}∞k=1 is

a1, a4, a7, . . .

which is the sequence { 1
3k−2}

∞
k=1. It converges to 0.

Since the original sequence admits two subsequences that converge
to different values, by the Corollary, the original sequence diverges.

15. Friday, March 12

I want to give a crazy example of a sequence:

Lemma 15.1. There exists a sequence of strictly positive rational num-
bers {an}∞n=1 such that every strictly positive rational number occurs in
it infinitely many times.
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Proof. Consider the points in the first quadrant whose Cartesian co-
ordinates are positive integers: (m,n) for some m,n ∈ N. Starting at
(1, 1) travel back and forth along diagonal lines of slope −1 as shown:

(Picture omitted)
This gives the list of points

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (4, 1), (3, 2), (2, 3), (1, 4), . . .

Now convert these to a list of rational numbers by changing (m,n) to
m
n

to get the sequence

1

1
,
1

2
,
2

1
,
1

3
,
2

2
,
3

1
,
1

4
,
2

3
,
3

2
,
4

1
, . . .

of positive rational numbers.
I claim every strictly positive rational number occurs infinitely many

times in this sequence: Let q be any strictly positive rational number.
Then q = m

n
for some m,n ∈ N. Moreover, q = jm

jn
for all j ∈ N, and

since jm
jn

occurs in the sequence for all j ∈ N, the number q appears

infinitely many times. �

We can improve this a bit:

Corollary 15.2. There exists a sequence {qn}∞n=1 of rational numbers
such that every rational number occurs infinitely many times.

Proof. Starting with a sequence {an}∞n=1 as in Lemma 15.1, such that
every strictly positive rational number occurs infinitely many times,
define a new sequence by

a1,−a1, 0, a2,−a2, 0, a3,−a3, 0, a3,−a3, 0, . . .
More formally, let

qn =


a(n−1)/3, if n is congruent to 1 modulo 3,

−a(n−2)/3, if n is congruent to 2 modulo 3, and

0, if n is congruent to 0 modulo 3.

It is clear that every rational number occurs infinitely many times in
this new sequence. �

In particular, the sequence {qn}∞n=1 in this Corollary has the following
property: For each rational number q, there is a subsequence of it that
converges to q. Namely, for any q ∈ Q, form the constant subsequence
q, q, q, . . . of the sequence, which is possible since q occurs an infinite
number of times.

In fact, we can do even better: I claim that every real number occurs
as a limit of the sequence of the Corollary!

First a Lemma.



48

Lemma 15.3. For any x ∈ R there is a sequence of rational numbers
that converges to x.

Proof. For each n ∈ N we have x < x + 1
n
, and hence by the Density

of the Rationals, there is a rational number an ∈ Q so that x < αn <
x + 1

n
. Since both the constant sequence {x}∞n=1 and the sequence

{x + 1
n
}∞n=1 converge to x. By the Squeeze Theorem, {an}∞n=1 also

converges to x. �

Theorem 15.4. There exists a sequence of rational numbers having
the property that every real number is the limit of some subsequence
of it.

Proof. Let {qn}∞n=1 be a sequence of rational nubmers as in Corollary
15.2, so that that every rational number occurs infinitely many times.
Let x be any real number. I will construct a subsequence that converges
to x.

By Lemma 15.3 there is a sequence of rational numbers {an}∞n=1

that converges to x. Since a1 ∈ Q, a1 occurs (infinitely many times) in
{qn}∞n=1 and hence there is n1 ∈ N such that a1 = qn1 .

Given n1 < · · · < nk such that qnk
= ak, we claim that we can find

some nk+1 ∈ N such that nk+1 > nk and qnk+1
= ak+1. Indeed, there

are infinitely many natural numbers m such that qm = ak+1, and only
finitely many of them can be less than or equal to nk, so there must be
such a number that is greater than nk.

Thus, we can recursively define an increasing sequence of natural
numbers n1 < n2 < n3 < · · · such that qnk

= ak for all k, and hence
{ak}∞k=1 is a subsequence of {qn}∞n=1. �

On the other hand, there is no sequence that actually contains every
real number. To prove this, we will use decimal expansions, as discussed
on the homework.

Recall that if d1, d2, d3, . . . is a sequence of “digits”, where di ∈
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} for every i, then the sequence {qn}∞n=1, where

qn =
d1
101

+
d2
102

+ · · ·+ dn
10n

converges, and we say that .d1d2d3 · · · is a decimal expansion for the
real number r = limn→∞ qn.

16. Monday, March 15

Theorem 16.1 (Cantor’s Theorem). There is no sequence that con-
tains every real number.
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Proof. By way of contradiction, suppose {an}∞n=1 is a sequence in which
every real number appears at least once. Write each member of this
sequence in its decimal form, so that

a1 = (whole part).d1,1d1,2d1,3 · · ·
a2 = (whole part).d2,1d2,2d2,3 · · ·
a3 = (whole part).d3,1d3,2d3,3 · · ·

...

where each di,j ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is a digit. Now form a real
number x as 0.e1e2e3 · · · where the ei’s are digits chosen as follows: Let

e1 =

{
1 if d1,1 6= 1

2 if d1,1 = 1,
e2 =

{
1 if d2,2 6= 1

2 if d2,2 = 1,
e3 =

{
1 if d3,3 6= 1

2 if d3,3 = 1,

and so on. In particular, ei 6= di,i for every i. Then x 6= a1 since these
two numbers have different first digits, x 6= a2 since these two numbers
have different second digits, etc.; in general, for any n, x 6= an since
these two numbers have different digits in the n-th position.

Thus x is not a member of this sequence, contrary to what we as-
sumed. �

It is worth noting that the proof given above is not quite correct
as written: just because two decimal expansions have different dig-
its does not mean that they yield different numbers. For example,
1 = 1.0000 . . . = 0.99999 . . . However, if a number has two decimal
expansions, one of them ends in all 0’s and the other ends in all 9’s, so
with our choices above, we are safe.

Our next big theorem has a very short statement, but is surprisingly
hard to prove.

Theorem 16.2 (Bolzano-Weierstrass Theorem). Every sequence has
a monotone subsequence.

The proof of this theorem requires two preliminary lemmas.

Lemma 16.3. If a sequence is not bounded above, then it has a sub-
sequence that is increasing. If a sequence is not bounded below, then it
has a subsequence that is decreasing.

Proof. Suppose {an}∞n=1 is not bounded above. This means that for
each real number M , there is a natural number such that an > M .
Using this assumption, we will build a strictly increasing sequence of
natural numbers n1 < n2 < · · · so that the subsequence {ank

}∞k=1 is
increasing. We will define this sequence recursively.
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We start by just letting n1 = 1.
If we have chosen nk, then let b = max{a1, . . . , ank

}. Since b is not
an upper bound of the sequence {an}∞n=1, there exists some m ∈ N
such that am > b. We must have m > nk, since otherwise am is on the
list a1, . . . , ank

so that am ≤ b. Thus, we can take nk+1 = m, and we
have nk+1 > nk and ank+1

> ank
. Thus, we have defined the desired

subsequence recursively.
The proof for the case of sequences that are not bounded below is

similar. �

Lemma 16.4. Let {an}∞n=1 be a sequence. Assume {an}∞n=1 is bounded
above and let β be the supremum of the numbers appearing in the se-
quence. If β does not occur in the sequence, then the sequence contains
an increasing subsequence.

Proof. Assume {an}∞n=1 is bounded above, β is the supremum of the
numbers appearing in the sequence, and β does not occur in the se-
quence. Notice that these conditions mean: (1) an < β for all n and
(2) if y is any real number such that y < β, then there exists a natural
number n such that an > y. Moreover, from (1) it follows that for all
n, we have max{a1, a2, . . . , an} < β.

We again define our subsequence recursively. We start by setting
n1 = 1.

If we have chosen nk, then let b = max{a1, . . . , ank
}. By (1) above,

b < β, and by (2) above, there is some m ∈ N for which b < am.
We must have m > nk, since otherwise am is on the list a1, . . . , ank

so that am ≤ b. Thus, we can take nk+1 = m, and we have nk+1 >
nk and ank+1

> ank
. Thus, we have defined the desired subsequence

recursively. �

Remark 16.5. We will actually use the contrapositive of the Lemma in
the proof of the Theorem:

If {an}∞n=1 is a bounded above sequence that does not
contain any increasing subsequences, then the supre-
mum of the terms of the sequence must occur somewhere
in the sequence.

Proof of Bolzano-Weierstrass Theorem 16.2. Let {an}∞n=1 be any se-
quence. Recall that our goal is to prove it either has an increasing
subsequence or it has a decreasing subsequence. We consider two cases.

Case I: The sequence is not bounded.
Then it is not bounded above or it is not bounded below, and in

either situation, Lemma 16.3 gives the result.
Case II: The sequence is bounded.
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We need to prove that it either has an increasing subsequence or a
decreasing subsequence. This is equivalent to showing that if it has
no increasing subsequences, then it does have at least one decreasing
subsequence. We continue from here next time. So, let us assume it
has no increasing subsequences.

We will prove it has at least one decreasing subsequence by con-
structing the indices n1 < n2 < · · · of such a subsequence one at a
time.

Let β1 be the supremum of all the terms of the sequence. By
Lemma 16.4 (see the remark following it), since {an}∞n=1 is bounded
above and does not contain any increasing subsequences, we know that
β1 must be in the sequence. That is, there exists a natural number n1

such that β1 = an1 . Note that it follows that an1 ≥ am for all m ≥ 1.
For any k, given nk, the subsequence ank+1, ank+2, ank+3, . . . is also

bounded above and has no increasing subsequence. Thus, it must con-
tain its supremum βk+1 by Lemma 16.4. So, βk+1 = am for some
m > nk. Choose nk+1 = m for such a value m. This gives a recursive
definition for nk.

By construction, we have nk+1 > nk for all k. Note that ank
= βk

is the supremum of a set that contains ank+1
= βk+1. It follows that

ank
≥ ank+1

. That is, we have constructed a decreasing subsequence of
the original sequence. �

17. Wednesday, March 17

Corollary 17.1 (Main Corollary of Bolzano-Weierstrass Theorem).
Every bounded sequence has a convergent subsequence.

Proof. Suppose {an}∞n=1 is a bounded sequence. By the Bolzano-Weierstrass
Theorem 16.2 it admits a monotone subsequence {ank

}∞k=1, and it
too is bounded (since any subsequence of a bounded sequence is also
bounded.) The result follows since every monotone bounded sequence
converges by the Monotone Convergence Theorem 10.3. �

Discussion Questions, March 17

Definition: A sequence {an}∞n=1 is called a Cauchy sequence if for
every ε > 0, there is some N ∈ R such that for all m,n ∈ N such that
m > n > N , we have |am − an| < ε.

Loosely speaking sequence is Cauchy if eventually all the terms are
very close together. The most important fact about Cauchy sequences
is the following:
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Theorem: A sequence is a Cauchy sequence if and only if it converges.

(1) Prove that the sequence { 1
n
}∞n=1 is a Cauchy sequence using the

definition.5

Pick ε > 0. (Scratch work: we need to figure out how
big m and n need to be in order that | 1

n
− 1

m
| < ε. Note

that if both 1
n

and 1
m

are between 0 and ε, then the distance
between them will be at most ε, and this occurs so long as
n,m > 1

ε
. So we will set N = 1

ε
. Back to the proof.) Let

N = 1
ε
. Let m,n ∈ N be such that m > N and n > N .

Then 0 < 1
n
< 1

N
= ε and 0 < 1

m
< 1

N
= ε. It follows that

|am − an| = |
1

m
− 1

n
| <= ε

and this proves the sequence is Cauchy.

(2) Write, in simplified form, precisely what it means for a sequence
to not be a Cauchy sequence.

There exists some ε > 0 such that for all N ∈ R, there are
natural numbersm,n withm > n > N such that |am−an| ≥
ε.

(3) Prove that every convergent sequence is a Cauchy sequence.6

Assume {an}∞n=1 converges to L. Pick ε > 0. We apply
the definition of “converges” to the sequence {an}∞n=1, which
converges to L, using the positive number ε

2
. We get that

there is a real number N such that if n ∈ N and n > N , then
|an − L| < ε

2
. I claim that this same number N “works” to

prove the sequence is Cauchy: Assume m and n are natural
numbers such that m > N and n > N . By the triangle
inequality

|am − an| ≤ |am − L|+ |L− an| <
ε

2
+
ε

2
= ε.

This proves {an}∞n=1 is a Cauchy sequence.

5Hint: Take N = 1
ε .

6Hint: Given ε > 0, apply the definition of “converges to L” with the positive
number ε

2 (where we usually write ε).
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(4) Prove that every Cauchy sequence is bounded.7

Using ε = 1 in the definition of “Cauchy”, we get that
there is an N such that if m,n ∈ N are such that m > N
and n > N , then we have |am − an| < 1. Let k be the
smallest natural number that is bigger than N , and let M
be the maximum of the numbers

a1, . . . , ak−1, ak + 1.

I claim M is an upper bound of this sequence. Given n ∈ N,
if n < k, then an ≤ M since in this case an occurs in the
above list. If n ≥ k then we have |an − ak| < 1 and thus
an < ak + 1 ≤ M . So, M is indeed an upper bound of the
sequence.

A similar argument shows that the sequence is bounded
below by the minimum number in the list a1, . . . , ak−1, ak−1.

(5) Prove that every Cauchy sequence has a convergent subsequence.

Since a Cauchy sequence is bounded, it has a convergent
subsequence by the Main Corollary to Bolzano-Weierstrass.

(6) Prove that every Cauchy sequence converges.8

it has a convergent subsequence {ank
}∞k=1; let’s say that

this subsequence converges to L. We will prove {an}∞n=1

itself converges to L, using that it is Cauchy.
Pick ε > 0. Since the sequence is Cauchy and ε/2 > 0,

by definition there is a number N1 such that if m > N1 and
n > N1 then |am − an| < ε/2. We will prove that this N1

“works” to show {an}∞n=1 converges to L; that is, I claim
that if n > N1, then |an − L| < ε.

To show this, we use that since the subsequence {ank
}∞k=1

converges to L and ε/2 is positive 0, there is a real number

7Hint: Take ε = 1 (or any other positive number. Consider an for some n > N
where N is the number we get from the definition. Focus first on bounding all of
the values am with m > n.

8Hint: By the previous part, we can take a subsequence {ank
}∞k=1 that converges

to some real number L. Taking ε
2 in the definition of {an}∞n=1 is Cauchy gives us a

“magic number” N1, and taking ε
2 in the definition of {ank

}∞k=1 converges to L gives
us a “magic number” N2. Use the triangle inequality with |ank

−L| and |an− ank
|

for some k > max{N1, N2}.



54

N2 such that if k > N2 then |ank
− L| < ε/2. Let k be any

natural number such that k > max{N1, N2}. Recall that
nk ≥ k and so we have nk > N1.

Let n be any natural number such that n > N . By the
Triangle Inequality

|an − L| ≤ |an − ank
|+ |ank

− L|.
Since n > N and nk > N , we have |an − ank

| < ε/2, and
since k > N2, we have |ank

− L| < ε/2. It follows that
|an−L| < ε/2+ε/2 = ε. We have proven {an}∞n=1 converges
to L.

18. Monday, March 22

We are now going to start talking about functions, limits of functions,
continuity of functions, etc.

In general, if S and T are any two sets, a function from S to T ,
written

f : S → T

is any “rule” that assigns to each element s ∈ S and unique element
t ∈ T . The element of T that is assigned to s by this rule is written
f(s).

This is not really a very good definition since “rule” itself is not
defined. A more careful definiton is: Given sets S and T , let S × T
denote the set consisting of all ordered pairs (s, t) where s ∈ S and
t ∈ T . Then a function f from S to T is a subset G of S × T having
the following property: For each s ∈ S there is a unique t ∈ T such
that (s, t) ∈ G. In other words, a function is by definition given by its
graph.

In this class, we will almost always consider functions of the form

f : S → R
where S is a subset of R. Indeed, henceforth, let us agree that if I say
“function” I mean a function of the form f : S → R for some subset S
of R. Recall that the domain of a function refers to the subset S of R
on which it is defined.

Often, but certainly not always, f will indeed by given by a formula,
such as f(x) = x2−1

x−1 . In such cases, we will usually be a bit sloppy in
specifying its domain S. For example, if I say “consider the function
f(x) = x2−1

x−1 ”, it is understood that its domain is every real number
on which this formula is well-defined. In this example, that would be
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S = R\{1} = {x ∈ R | x 6= 1}. Following this convention, f(x) = x2−1
x−1

and g(x) = x + 1 are two different functions, since their domains are
different.

It is also worth noting that while most of the functions we consider
will be given by formulas, there are many funstions that cannot be
expressed in terms of formulas. Imagine for every real number x flipping
a coin and setting f(x) = 1 if coin x turns up heads and f(x) = 0 if
coin x turns up tails. The result will certainly be a function, albeit an
unimaginably wild one.

Many times, the domain of the functions we talk about will be in-
tervals:

(a, b), (a, b], [a, b), [a, b], (a,∞), (−∞, b), [a,∞), (−∞, b], (−∞,∞)

Definition 18.1. Let f : S → R be a function (where S is a subset of
R) and let a ∈ R be any real number. For a real number L, we say the
limit of f(x) as x approaches a is L provided the following condition
is met:

For every ε > 0, there is δ > 0 such that if x is any real
number such that 0 < |x − a| < δ, then f is defined at
x and |f(x)− L| < ε.

As a matter of shorthand, we write limx→a f(x) = L to mean the limit
of f(x) as x approaches a is L.

Here is an equivalent formulation:

For every ε > 0, there is δ > 0 such that if x is any real
number such that either a− δ < x < a or a < x < a+ δ,
then f is defined at x and |f(x)− L| < ε.

Note that in order for the limit of f at a to exist, we need in particular
that there is a δ > 0 such that f is defined at every point on (a− δ, a)
and (a, a + δ). Loosely, f needs to be defined at all points near, but
not necessarily equal to, a. If the domain of f is R or R \ {a}, this
condition is automatic.

The more important condition is that if 0 < |x − a| < δ, then
|f(x)− L| < ε. Intuitively, this is saying that no matter how small of
a positive number ε you pick, if you only look at inputs very close to
(but not equal to) a, the function values at these inputs are within a
distance of ε of the limiting value L.

Example 18.2. Let f be the function given by the formula

f(x) =
5x2 − 5

x− 1
.
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Recall our convention that we interpret the domain of f to be all real
numbers where this rule is defined. So, f : S → R where S = R \ {1}.

I claim that the limit of f(x) as x approaches 1 is 10. Pick ε > 0.
(Scratch work: Since f is defined at all points other that 1, the

condition about f being defined for all x such that 0 < |x − a| < δ
will be met for any choice of δ. We need |f(x) − 10| < ε to hold.
Manipulating this a bit, we see that it is equivalent to |x − 1| < ε

5
.

Thus setting δ = ε
5

is the way to go. Back to the proof....)
Let δ = ε

5
. Pick x such that 0 < |x− 1| < δ. Then x 6= 1 and hence

f is defined at x. We have

|f(x)− 10| =
∣∣∣∣5x2 − 5

x− 1
− 10

∣∣∣∣
=

∣∣∣∣5x2 − 5− 10x+ 10

x− 1

∣∣∣∣
=

∣∣∣∣5x2 − 10x+ 5

x− 1

∣∣∣∣
=

∣∣∣∣5(x2 − 2x+ 1)

x− 1

∣∣∣∣
=

∣∣∣∣5(x− 1)2

x− 1

∣∣∣∣
= |5x− 5|
= 5|x− 1|
< 5δ

= ε

We have shown that for any ε > 0 there is a δ > 0 such that if
0 < |x− 1| < δ, then f is defined at x and |f(x)− 10| < ε. This proves
limx→1 f(x) = 10.

19. Wednesday, March 24

Example 19.1. Let’s do a more complicated example: Let f(x) = x2

with domain all of R. I claim that limx→2 x
2 = 4. This is intuitively

obvious but we need to prove it using just the definition.

Proof. Pick ε > 0.
(Scratch work: The domain of f is all of R and so we don’t need to

worry at all about whether f is defined at all. We need to figure out
how small to make δ so that if 0 < |x− 2| < δ then |x2 − 4| < ε. The
latter is equivalent to |x−2||x+2| < ε. We can make |x−2| arbitrarily
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small by making δ aribitrarily small, but how can we handle |x + 2|?
The trick is to bound it appropriately. This can be done in many ways.
Certainly we can choose δ to be at most 1, so that if |x− 2| < δ then
|x − 2| < 1 and hence 1 < x < 3, so that |x + 2| < 5. So, we will
be allowed to assume |x + 2| < 5. Then |x − 2||x + 2| < 5|x − 2| and
5|x− 2| < ε provided |x− 2| < ε

5
. Back to the formal proof...)

Let δ = min{ ε
5
, 1}. Let x be any real number such that 0 < |x− 2| < δ.

Then certainly f is defined at x. Since δ ≤ 1 we get |x − 2| < 1 and
hence |x + 2| ≤ 5. Since δ ≤ ε

5
we have |x − 2| < ε

5
. Putting these

together gives

|f(x)− 4| = |x2 − 4| = |x− 2||x+ 2| < |x− 2|5 < ε

5
5 = ε.

This proves limx→2 x
2 = 4. �

Let’s give an example of a function that does not have a limiting
value as x approaches some number a.

Example 19.2. Let f(x) = 1
x−3 with domain R\{3}. I claim that the

limit of f(x) as x approaches 3 does not exist. To prove this, by way
of contradiction, suppose the limit of f(x) as x approaches 3 does exist
and is equal to L. Taking ε = 1 in the definition, there is a δ > 0 so
that if 0 < |x− 3| < δ, then

∣∣ 1
x−3 − L

∣∣ < 1. We can find a real number
x so that both 3 < x < 3.05 and 0 < |x − 3| < δ hold. For such an x
we have

∣∣ 1
x−3 − L

∣∣ < 1 and so

1

x− 3
− 1 < L <

1

x− 3
+ 1,

and we also have 0 < x− 3 < .05 and so 1
x−3 > 20. It follows that

L > 19.

Now pick x such that 2.95 < x < 3 and 0 < |x− 3| < δ. We get

1

x− 3
− 1 < L <

1

x− 3
+ 1,

and 1
x−3 < −20 and hence

L < −19.

This is not possible; so the limit of f(x) as x approaches 3 does not
exist.

Example 19.3. Let f(x) =
√
x. Does limx→0 f(x) = 0? No. Since

the domain of f is [0,∞), there is no δ > 0 such that f is defined at
all x satisfying 0 < |x− 0| < δ (e.g., for any δ > 0, f is not defined at
−δ/2).
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But, later, we will talk about one-sided limits, and we will see that
it is true that limx→0+

√
x = 0.

The following result gives an important connection between limits
of functions and limits of sequences. This Lemma will allow us to
translate statements we have proven about limits of sequences to limits
of functions.

Theorem 19.4. Let f(x) be a function and let a be a real number. Let
r > 0 be a positive real number such that f is defined at every point of
{x ∈ R | 0 < |x− a| < r}. Let L be any real number.

limx→a f(x) = L if and only if for every sequence {xn}∞n=1 that con-
verges to a and satisfies 0 < |xn − a| < r for all n, we have that the
sequence {f(xn)}∞n=1 converges to L.

Loosely, the condition that there is an r > 0 such that f is defined
at every point of {x ∈ R | 0 < |x−a| < r} says that “f is defined near,
but not necessarily at, a”.

20. Friday, March 26

Proof of Theorem 19.4. Let f be a function, a ∈ R, and r > 0 a posi-
tive real number such that f is defined on {x ∈ R | 0 < |x− a| < r}.

(⇒) Assume limx→a f(x) = L. Let {xn}∞n=1 be any sequence that
converges to a and is such that 0 < |xn − a| < r for all n. We need to
prove that the sequence {f(xn)}∞n=1 converges to L.

Pick ε > 0. By definition of the limit of a function, there is a δ > 0
such that if 0 < |x− a| < δ, then f is defined at x and |f(x)− L| < ε.
Since δ > 0 and {xn}∞n=1 converges to a, by the definition of conver-
gence, there is an N such that if n ∈ N and n > N then |xn − a| < δ.
I claim that this N “works” to prove {f(xn)}∞n=1 converges to L too:
If n ∈ N and n > N , then |xn − a| < δ and, since xn 6= a for all n, we
have 0 < |xn− a| < δ. It follows that |f(xn)−L| < ε. This shows that
{f(xn)}∞n=1 converges to L.

(⇐) We prove the contrapositive. That is, assume limx→a f(x) is not
L (including the case where the limit does not exist). We need to prove
that there is at least one sequence {xn}∞n=1 such that (a) it converges
to a, (b) 0 < |xn− a| < r for all n and yet (c) the sequence {f(xn)}∞n=1

does not converge to L.
The fact that limx→a f(x) is not L means:

There is an ε > 0 such that for every δ > 0 there exists
an x ∈ R such that 0 < |x− a| < δ, but either f is not
defined at x or |f(x)− L| ≥ ε.
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For this ε, for any natural number n, set δn = min{ 1
n
, r}. We get that

there is a xn ∈ R such that 0 < |xn − a| < δn and |f(xn) − L| ≥ ε.
(Note that f is necessarily defined at xn since δn ≤ r.) I claim that
the sequence {xn}∞n=1 satisfies the needed three conditions. (a) Since
δn ≤ 1

n
, we have a − 1

n
< xn < a + 1

n
for all n, and hence by the

Squeeze Lemma, the sequence {xn}∞n=1 converges to a. (b) This holds
by construction, since δn ≤ r. (c) Since, for the positive number ε
above, we have |f(xn)−L| ≥ ε for all n, the sequence {f(xn)}∞n=1 does
not converges to L. �

Corollary 20.1. Let f be a function and a and L be real numbers.
Suppose that the domain of f is all of R or Rr{a}. Then limx→a f(x) =
L if and only if for every sequence {xn}∞n=1 that converges to a such
that xn 6= a for all n, we have that the sequence {f(xn)}∞n=1 converges
to L.

Proof. (⇒) Assume limx→a f(x) = L, and let {xn}∞n=1 be a sequence
that converges to a such that xn 6= a for all n. Since {xn}∞n=1 is
convergent, it is bounded, so there is some M > 0 such that |xn| < M
for all n. Then |xn − a| < M + |a| by the Triangle Inequality. Thus,
0 < |xn − a| < M + |a| for all n, so we can apply Theorem 19.4 (with
“r”= M + |a|), so {f(xn)}∞n=1 converges to L.

(⇐) The point is that if the “right hand side” condition holds in
this statement, then for any r > 0, the “right hand side” condition of
Theorem 19.4 holds. Thus, by Theorem 19.4, limx→a f(x) = L. �

21. Monday, March 29

This theorem allows us to reuse some of our hard work on conver-
gence of sequences and apply it to limits.

Theorem 21.1. Suppose f and g are two functions and that a is a
real number, and assume that

lim
x→a

f(x) = L and lim
x→a

g(x) = M

for some real numbers L and M . Then

(1) limx→a(f(x) + g(x)) = L+M .
(2) For any real number c, limx→a(c · f(x)) = c · L.
(3) limx→a(f(x) · g(x)) = L ·M .
(4) If, in addition, we have that M 6= 0, then limx→a(f(x)/g(x)) =

L/M .

Proof. Each part follows from Theorem 19.4 and the corresponding the-
orem about sums, products, and quotients of sequences (Theorem 10.5).
We give the details just for one of them, part (3):
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First, as a technical matter, we note that since we assume limx→a f(x) = L
there is a positive real number r1 such that f(x) is defined for all x
satisfying 0 < |x − a| < r1, and likewise since limx→a g(x) = L there
is a positive real number r2 such that g(x) is defined for all x satis-
fying 0 < |x − a| < r1. Letting r = min{r1, r2}, we have that r > 0
and f(x) and g(x) and hence f(x) · g(x) are defined for all x satis-
fying 0 < |x − a| < r. (We needed to prove this in order to apply
Theorem 19.4.)

Let {xn}∞n=1 be any sequence converging to a such that 0 < |xn − a| < r
for all n. By Theorem 19.4 in the “forward direction”, we have that
limn→∞ f(xn) = L and limn→∞ g(xn) = M . By Theorem 10.5,
limn→∞ f(xn)g(xn) = L ·M . So, by Theorem 19.4 again (this time ap-
plying it to f(x)g(x) and using the “backward implication”), it follows
that limx→a(f(x) · g(x)) = L ·M . �

Discussion Questions, March 29

(1) Let a ∈ R.
(a) Prove that limx→a x = a using the ε− δ definition.
(b) Now use Corollary 20.1 to prove that limx→a x = a.

(a) Let ε > 0. Take δ = ε. Then if 0 < |x− a| < δ = ε, we
have |x− a| < ε.

(b) Let {xn} be a sequence that converges to a with xn 6= a
for all n. Then, since {xn} converges to a, we have
limx→a x = a by Corollary 20.1.

(2) (a) Explain what needs to be changed from the proof of part
(3) of Theorem 21.1 to prove the other parts. (You don’t
need to write them out in detail, just discuss.)

(b) Use Theorem 21.1 to compute limx→2
3x2−x+2
x+3

.

(a) For (1) and (2), just change the operations. For (4),
we need to make sure that g(xn) 6= 0 for all n. For
this, take ε = |M | in definition of limit; it follows that
there is a δ > 0 such that for 0 < |x − a| < δ we have
|g(x)−M | < |M | for all n, so g(x) 6= 0. Now if we take
r = min{r1, r2, δ}, the proof works.

(b) 12/5
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(3) Let f(x) = sin(1/x). Use Corollary 20.1 to prove that limx→0 f(x)
does not exist.9

To obtain a contradiction, suppose that limx→0 f(x) = L
for some L ∈ R. Note that for the sequence {an} with
an = 1/πn, we have limn→∞ f(an) = limn→∞ 0 = 0,
so L = 0 by Corollary 20.1. On the other hand, for
the sequence {bn} with bn = 1/(2πn + π/2), we have
limn→∞ f(bn) = limn→∞ 1 = 1, so L = 1 by Corollary 20.1.
This is a contradiction, so no such L exists.

(4) Consider the function f : R → R given by the rule f(x) ={
1 if x ∈ Q
0 if x /∈ Q.

Use Corollary 20.1 to prove that for every a ∈ R, lim
x→a

f(x) does

not exist.

Fix a and, by way of contradiction, suppose limx→a f(x)
exists and is equal to L. Let {qn}∞n=1 be any sequence of ra-
tional numbers that converges to a such that qn 6= a for all n.
(Such a sequence exists by Lemma 15.3 above; technically
this Lemma does not include the statement that qn 6= a
for all n, but the proof makes it clear that there is a se-
quence that also has this property.) Then by Theorem 19.4,
L = limn→∞ f(qn). But f(qn) = 1 for all n by definition,
and hence L = 1.

On the other hand, as you proved on the homework, there
also exists a sequence {yn}∞n=1 that converges to a such that
yn is irrational for each n and yn 6= a for all n. (Likewise,
the homework problem did not include the fact that yn 6= a
for all n, but your proof should give that too.) By Theo-
rem 19.4, L = limn→∞ f(yn). But f(yn) = 1 for all n by
definition, and hence L = 0. This is impossible.

(5) Prove the following theorem:

9Hint: Find sequences {an}∞n=1, {bn}∞n=1 that converge to 0 such that {f(an)},
{f(bn)} are constant.
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Squeeze theorem for functions: Suppose f , g, and h
are three functions and a is a real number. Suppose there is a
positive real number r > 0 such that
(a) each of f, g, h is defined on {x ∈ R | 0 < |x− a| < r},
(b) f(x) ≤ g(x) ≤ h(x) for all x such that 0 < |x− a| < r,
(c) limx→a f(x) = L = limx→a h(x) for some number L.

Then limx→a g(x) = L.

Let f, g, h, a, r, L be as in the statement. Let {xn}∞n=1

be a sequence that converges to a and such that 0 <
|xn − a| < r for all n. By Theorem 19.4, it suffices
to show that limn→∞ g(xn) = L. By Theorem 19.4, we
know that limn→∞ f(xn) = L = limn→∞ h(xn). Since
f(xn) ≤ g(xn) ≤ h(xn) for all n, we have limn→∞ g(xn) = L
by the Squeeze Theorem (for sequences).

(6) Prove that limx→0 x sin (1/x) = 0.

Note that −|x| ≤ x sin (1/x) ≤ |x| for all x ∈ R. Since
limx→0 |x| = 0 (by an argument similar to problem 1), the
statement follows from the Squeeze Theorem for Functions.

22. Friday, April 2

We come to the formal definition of continuity. We first define what
it means for a function to be continuous at a single point, but ultimately
we will be interested in functions that are continuous on entire intervals.

Definition 22.1. Suppose f is a function and a is a real number. We
say f is continuous at a provided the following condition is met:

For every ε > 0 there is a δ > 0 such that if x is a real
number such that |x− a| < δ then f is defined at x and
|f(x)− f(a)| < ε.

Remark 22.2. If f is continuous at a, then by applying the definition
using any postive number ε > 0 you like (e.g., ε = 1) we get that there
exists a δ > 0 such that f is defined for all x such that a−δ < x < a+δ.
That is, in order for f to be continuous at a it is necessary (but not
sufficient) that f is defined at all points near a including at a itself. In
particular, unlike in the definition of “limit”, f must be defined at a in
order for it to possibly be continuous at a.
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Example 22.3. I claim f(x) = 3x is continuous at a for every value
of a. Pick ε > 0. Let δ = ε

3
. If |x− a| < δ then f is defined at x (since

the domain of f is all of R) and

|f(x)− f(a)| = |3x− 3a| = 3|x− a| < 3δ = ε.

Example 22.4. The function f(x) with domain R defined by

f(x) =

{
2x− 7 if x ≥ 3 and

−x if x < 3

is not continuous at 3. Since the domain of f is all of R, the negation
of the defintion of “continuous at 3” is:

there is an ε > 0 such that for every δ > 0 there is a real
number x such that |x− 3| < δ and |f(x)− f(3)| ≥ ε.

Set ε = 1. For any δ > 0, we may choose a real number x so that
3− δ < x < 3 and 2.9 < x < 3. For such an x, we have

|f(x)− f(3)| = | − x+ 1| = x− 1 > 1.9 > ε.

The proves f is not continuous at 3.

The definition of continuous looks a lot like the definition of limit,
with L replaced by f(a). This is not just superficial:

Theorem 22.5. Suppose f is a function and a is a real number and
assume that f is defined at a. f is continous at a if and only if
limx→a f(x) = f(a).

Remark 22.6. Remember, when we write limx→a f(x) = f(a) we mean
that the limit exists and is equal to the number f(a). So, by this
Lemma, if limx→a f(x) does not exist, then f is not continuous at a.

Proof. (⇒) This is immediate from the definitions.
(⇐) This is almost immediate from the definitions: Suppose limx→a f(x) =

f(a). Pick ε > 0. Then there is a δ such that if 0 < |x− a| < δ, then f
is defined at x and |f(x)−f(a)| < ε. This nearly gives that f is contin-
uous at a by definition, except that we need to know that if |x−a| < δ,
then f is defined at x and |f(x)− f(a)| < ε. The only “extra” case is
the case x = a. But if x = a, then f is defined at a by assumption and
we have |f(x)− f(a)| = 0 < ε. �

Example 22.7. Polynomials are continuous everywhere: Suppose f(x) =
cnx

n + · · · + c1x + c0 for some integer n ≥ 0 and some real numbers
c0, . . . , cn. The domain of f is all of R. Let a ∈ R be any real number. I
claim f is continuous at a. We should probably prove this by induction
on n, but let’s be a little less formal: For any a, using the Theorem
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about sums, products, etc. of limits of functions and the facts that
limx→a c = c and limx→a x = a, we get

lim
x→a

f(x) = cn

(
lim
x→a

x
)n

+· · ·+c1
(

lim
x→a

x
)

+c0 = cna
n+· · ·+c1a+c0 = f(a).

Example 22.8. Define a function f whose domain is all of R by

f(x) =

{
1 if x ∈ Q and

0 if x /∈ Q.

As I proved, limx→a f(x) does not exist for any a. So, this function is
continuous nowhere.

Example 22.9. Recall the function f whose domain is all of R defined
by

f(x) =

{
x if x ∈ Q and

0 if x /∈ Q.

As you showed, limx→0 f(x) = 0 and limx→a f(x) does not exist for all
a 6= 0. Since f(0) = 0 this shows that f(x) is continuous at x = 0, but
not continuous at all other points. So, somewhat counterintuitively, it
is possible for a function defined on all of R to be continuous at one
and only one spot!

23. Monday, April 5

Theorem 23.1. Let a ∈ R and suppose f and g are two function that
are both continuous at a. Then so are

(1) f(x) + g(x),
(2) c · f(x), for any constant c,
(3) f(x) · g(x), and

(4) f(x)
g(x)

provided g(a) 6= 0.

Proof. Follows from Theorems 22.5 and 21.1. �

Recall that for functions f and g, f ◦ g is the composition: it is the
function that sends x to f(g(x)). The domain of f ◦ g is

{x ∈ R | x is the domain of g and g(x) is in the domain of f}.
Theorem 23.2. Suppose g is continuous at a point a and f is contin-
uous at g(a). Then f ◦ g is continuous at a.

Example 23.3. • The function f(x) =
√
x is continuous at a for

every a > 0. This holds since for any a > 0, as you proved on
the homework we have

lim
x→a

√
x =
√
a.
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• The function
√
x2 + 5 is continuous at every real number: let

g(x) = x2 + 5 and f(x) =
√
x. Then g is continuous at a for

every a ∈ R since it is a polynomial. For each x ∈ R, g(x) > 0
and hence f is continuous at g(x). So

√
x2 + 5 is continuous at

every a ∈ R by the Theorem.

Example 23.4. You can apply the Theorem to the compositions of
more than two functions too. For example

√
|x3|+ 1 is continuous at

a for and a ∈ R.

Proof of Theorem. Let a ∈ R be such that that g is continuous at a
and f is continuous at g(a). I prove f ◦ g is continuous at a using the
definition.

Pick ε > 0. Since f is continuous at g(a), there is a γ > 0 such that
if |y− g(a)| < γ then f is defined at y and |f(y)− f(g(a))| < ε. (I am
using y in place of the usual x for clarity below, and I am calling this
number γ, and not δ, since it is not the δ I am seeking.) Since γ > 0
and g is continuous at a, there is a δ > 0 such that if |x− a| < δ then
g is defined at x and |g(x)− a| < γ.

This δ “works” to prove f ◦ g is continuous at a: Let x be any real
number such that |x−a| < δ. Then g is defined at x and |g(x)−g(a)| <
γ. Taking y = g(x) above, this gives that f is defined at g(x) and
|f(g(x))− f(g(a))| < ε. This proves f ◦ g is continuous at a. �

We are probably getting a bit tired of saying “continuous at a for
every a ∈ R”. The following definition we then be convenient.

Definition 23.5. Let S be an open interval of R of the form S =
(a, b), S = (a,∞), S = (−∞, a), or S = (−∞,∞) = R. We say f is
continuous on S if f is continuous at a for all a ∈ S.

Example 23.6. • Every polynomial is continuous on R.
• Every polynomial is continuous on (−13, 5).
• The function

√
x is continuous on (0,∞).

• The function 1/x is continuous on (0,∞). It is also continuous
on (−∞, 0).

Since the function
√
x does not jump at x = 0, we would like to say

the function is continuous on all of [0,∞). However, the definition for
f to be continuous at a point a requires that f is defined on (a−δ, a+δ)
for some δ > 0, so we have to change our definition a bit.

Definition 23.7. Given a function f(x) and real numbers a < b, we
say f is continous on the closed interval [a, b] provided

(1) for every r ∈ (a, b), f is continuous at r in the sense defined
already,



66

(2) for every ε > 0 there is a δ > 0 such that if x ∈ [a, b] and
a ≤ x < a+ δ, then |f(x)− f(a)| < ε.

(3) for every ε > 0 there is a δ > 0 such that if x ∈ [a, b] and
b− δ < x ≤ b, then |f(x)− f(a)| < ε.

In short, f is continuous on [a, b] if is it continuous on (a, b), if it is
“continuous from the right at a”, and it is “continuous from the left
at b”. We can also discuss continuity on intervals of the form [a,∞):
such a function must be continuous on (a,∞) and “continuous from
the right at a”.

24. Wednesday, April 7

Remark 24.1. If [a, b] is a closed interval, and f is continuous at r
for every r ∈ [a, b], then f is continuous on the closed interval [a, b];
this follows directly from the definition. The converse of this is false,
however, as we will see in examples below.

The notion of continuity on a closed interval can be characterized in
terms of one-sided limits.

Proposition 24.2. Assume f is defined at every point of [a, b]. Then
f is continuous on [a, b] if and only if

(1) for every r ∈ (a, b), limx→r f(x) = f(r),
(2) limx→a+ f(x) = f(a), and
(3) limx→b− f(x) = f(b).

Proof. Similar to proof of Theorem 22.5. �

Example 24.3. I claim that the function
√

1− x2 is continuous on
[−1, 1].

It is continuous at a for all a such that −1 < a < 1 since 1 − x2 is
continuous on all of R,

√
y is continuous on (0,∞), and 1− x2 > 0 for

all −1 < x < 1.
To prove the condition at the endpoint −1, pick ε > 0. (Scratch

work:
√

1− x2 < ε if and only if |1 − x||1 + x| < ε2. So long as
−1 ≤ x < 1 we have |1 − x| ≤ 2.) Let δ = min{ε2/2, 2}. Assume
x is any real number such that −1 ≤ x < −1 + δ. Since δ ≤ 2, we
get that −1 ≤ x ≤ 1 and hence

√
1− x2 is defined. It is also true

that |1 + x| ≤ 2 and hence
√
|1 + x| ≤

√
2. Since δ ≤ ε2/2 we have√

|1− x| ≤
√
ε2/2 = ε/

√
2. Thus we obtain

√
1− x2 =

√
|1− x|

√
|1 + x| <

√
2ε/
√

2 = ε.

The other endpoint 1 is dealt with in a similar way.
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Notice that f is not continuous at −1 , since f is not defined on
(−1− δ,−1 + δ) for any δ > 0.

We arrive at a batch of well-known and pleasing theorems pertaining
to continuous functions.

Theorem 24.4 (Intermediate Value Theorem). Suppose f is a func-
tion and a < b and that f is continuous on the closed interval [a, b].
If y is any number between f(a) and f(b) (i.e., f(a) ≤ y ≤ f(b) or
f(a) ≥ y ≥ f(b)), then there is an c ∈ [a, b] such that f(c) = y.

Proof. Assume f is continuous on [a, b] and y is a real number such
that f(a) ≤ y ≤ f(b) or f(b) ≤ y ≤ f(a). We need to prove there is a
c ∈ [a, b] such that f(c) = y.

Let us assume f(a) ≤ y ≤ f(b) — the other case may be proved in
a very similar manner, or by appealing to this case using the function
−f(x) instead.

If f(a) = y then we may take c = a and if f(b) = y then we may
take c = b. So, we may assume f(a) < y < f(b).

Consider the set

S = {z ∈ R | a ≤ z ≤ b and f(x) < y for all x ∈ [a, z]}

This set is nonempty, since a ∈ S, and it is bounded above, by b. It
therefore has a supremum, which we will call c. I claim f(c) = y.

Let us first show that c > a. By way of contradiction, suppose c ≤ a.
Since c ≥ a, we must have c = a. Since f is continuous on [a, b], taking
ε = y − f(a) > 0 in the definition, we get that there is a δ > 0 such
that if a ≤ x < a + δ, then f(a)− ε < f(x) < f(a) + ε. In particular,
if a ≤ x ≤ a + δ/2, then f(x) < f(a) + ε = y. This proves that
a + δ/2 ∈ S. But a + δ/2 > a = c, contrary to the fact that c is the
supremum of S. We conclude that c > a.

Similarly, one may show that c < b — I leave this to you as an
exercise.

We now know that a < c < b, and we next prove that f(c) = y by
showing that f(c) > y and f(c) < y are each impossible.

Suppose f(c) > y. Setting ε = f(c)− y and applying the definition
of continuous at c, there is a δ > 0 such that if x is any number such
that c− δ < x < c+ δ then f(c)− ε < f(x) < f(c) + ε. In particular,
for any z such that c− δ < z ≤ c, we have

f(z) > f(c)− ε = y.

In particular, z is not in the set S. It follows that c − δ is an upper
bound of S, contrary to the fact that c is the least upper bound of S.
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Suppose f(c) < y. Setting ε = y − f(c) and applying the definition
of continuous at c, there is a δ > 0 such that if c − δ < x < c + δ,
then f(c)− ε < f(x) < f(c) + ε. In particular, if x is any real number
such that c ≤ x ≤ c + δ/2, then f(x) < f(c) + ε = y. Moreover, if
x < c, then x is not an upper bound of S, and hence there is a z ∈ S
such that x < z. If follows that f(x) ≤ y. So, we have shown that if
x ≤ c + δ/2, then f(x) < y. This shows that c + δ/2 ∈ S, contrary to
c being an upper bound of S. �

25. Friday, April 9

Example 25.1. As a “real world” example, of the Intermediate Value
Theorem, if the temperature at midnight last night was 45 degrees, and
it is now 54 degrees, then there was an instant where it was exactly
51.3 degrees.

Example 25.2. Let f(x) = x2. Then f is continuous on [0, 2] (and,
for that matter, on any closed interval) since it is a polynomial. We
have f(0) ≤ 2 ≤ f(2) and hence by the IVT there is an x ∈ [0, 2] such
that x2 = 2. That is, the square root of two exists as a real number.

Example 25.3. We can also prove that cube roots exist using the IVT.

Proof. Let f(x) = x3.
I claim that there are numbers a and b such that f(a) ≤ r ≤ f(b):

If r ≥ 1, then a = 0 and b = r work; if r ≤ −1, then a = r and b = 0
work; and if −1 ≤ r < 1, then a = −1 and b = 1 work.

Since f is a polynomial, it is continuous on all of R and hence on the
closed interval [a, b]. Thus, since f(a) ≤ r ≤ f(b) by the Intermediate
Value Theorem, there is a real number s such that a ≤ s ≤ b and
f(s) = r; that is, s3 = r. �

Example 25.4. The Intermediate Value Theorem would become false
if we omitted the continuity assumption. For instance, suppose f(x) =
x for x < 0 and f(x) = x + 1 for x ≥ 0. Then f is defined on [−1, 1],
f(−1) = −1 and f(1) = 2. So f(−1) < 1/2 < f(1), there there is
clearly no x such that f(x) = 1/2.

Our next goal is to prove the Boundedness Theorem and the Extreme
Value Theorem. You might recall the latter from Calculus class. Here
are the statements:

Theorem 25.5 (Boundedness Theorem). Suppose f is continuous on
the closed interval [a, b] for some real numbers a, b with a < b. Then f
is bounded on [a, b] — that is, there are real numbers m and M so that
m ≤ f(x) ≤M for all x ∈ [a, b].
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Remark 25.6. The statement of this theorem would become false if
either we omit the continuous assumption or if we changed the closed
interval [a, b] to an open one.

For example, consider

f(x) =

{
1/x if x 6= 0 and

5 if x = 0.

Simialarly, f(x) = 1
x

is continuous on (0, 1) but not bounded on it.

Theorem 25.7 (Extreme Value Theorem). Assume f is continuous on
the closed interval [a, b] for some real numbers a and b with a < b. Then
f attains a minimum and a maximum value on [a, b] — that is, there
exists a number r ∈ [a, b] such that f(x) ≤ f(r) for all x ∈ [a, b] and
there exists a number s ∈ [a, b] such that f(x) ≥ f(s) for all x ∈ [a, b].

Remark 25.8. The statement of the Extreme Value Theorem would
become false if we either omitted the continous assumption or replaced
[a, b] with, for example, (a, b).

Remark 25.9. The Boundedness Theorem is an immediate consequence
of the Extreme Value Theorem. The reason we state it first as a sep-
arate theorem is that we need the Boundedness Theorem in order to
prove the Extreme Value Theorem.

End of material for exam 2

26. Monday, April 12

For the proofs of both of these theorems, we will need the following
Lemma.

Lemma 26.1. Assume f is continuous on [a, b] and that {xn}∞n=1 is
any sequence such that a ≤ xn ≤ b for all n. If {xn}∞n=1 converges to
some number r, then

(1) r ∈ [a, b] and
(2) limn→∞ f(xn) = f(r).

Proof. For part (1), to show that r ≤ b, by way of contradiction suppose
that r > b. Taking ε = r − b in the definition of “converges to r” we
see that there is some N ∈ R such that if n > N and n ∈ N then
an > r− ε = b, which contradicts that an ≤ b for all n. The inequality
r ≥ a is similar.

To prove (2) we proceed in cases:
Case 1: a < r < b. Let ε > 0. Since f is continuous at r, there is

some δ > 0 such that if |x− r| < δ, then |f(x)− f(r)| < ε. Using this
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positive number δ in the definition of the sequence {xn} to converge
to r, there is some N ∈ R such that if n > N , then |xn − r| < δ.
Consequently, for this N , if n > N , then |f(xn) − f(r)| < ε. This
means that {f(xn)} converges to f(r).

Case 2: r = a. Similarly to above, let ε > 0. By definition, there is
some δ > 0 such that if a ≤ x < a + δ then |f(x) − f(a)| < ε. Again
using δ in the definition of the sequence {xn} to converge to r, there is
some N ∈ R such that if n > N , then |xn− a| < δ. By our hypotheses
on {xn} we must have a ≤ xn < a + δ for n > N . Consequently, for
this N , if n > N , then |f(xn) − f(r)| < ε. Again, this means that
{f(xn)} converges to f(r).

Case 3: r = b. Similar to Case 2. �

Proof of the Boundedness Theorem. Assume f(x) is continuous on the
closed interval [a, b]. By way of contradiction, suppose f(x) is not
bounded above. Then for each natural number n, the function f(x) is
bigger than n somewhere on the interval. So, for each n ∈ N, there
is a real number xn such that a ≤ xn ≤ b and f(xn) > n. Con-
sider the sequence {xn}∞n=1 formed by these chosen numbers. It need
not converge, but it is bounded (above by b and below by a) and so
the Main Corollary to the Bolzano-Weierstrass Thereom ensures that
there is a subsequence {xnk

}∞k=1 that converges, say to the number r.
By the Lemma, r ∈ [a, b] and limk→∞ f(xnk

) = f(r). In particular,
{f(xnk

)}∞k=1 converges. But by construction f(xnk
) > nk for all k, and

so it cannot converge. We have reached a contradiction. So f must be
bounded above.

To show f(x) is bounded below, using what we have already proven,
we have that −f(x) is also bounded above by some number N , and it
follows that f(x) is bounded below by −N . �

Proof of the Extreme Value Theorem. We first prove f attains a max-
imum value on [a, b].

Let R be the range of f ; that is,

R = {y ∈ R | y = f(x) for some x ∈ [a, b]}.
By the Boundedness Theorem, R is bounded above, and it is clearly
nonempty. So, by the Completeness Axiom it has a supremum, call it
M . We can find a sequence {yn} with yn ∈ R for all n that converges
to M . (This follows from the definition of supremum: for each n ∈ N
since M − 1

n
is not an upper bound of R, there exists a yn ∈ R with

M − 1
n
< yn ≤M . By the Squeeze Theorem, {yn} converges to M .)

Since yn ∈ R, for each n, we may pick xn ∈ [a, b] such that f(xn) =
yn. The sequence {xn} might not converge, but it is bounded, and
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so thanks to the Main Corollary of the Bolzano-Weierstrass Theorem
it has a subsequence {xnk

} that does converge. Say this subsequence
converges to r. By the Lemma, we have r ∈ [a, b] and

f(r) = lim
k→∞

f(xnk
) = lim

k→∞
ynk

.

Since {ynk
} is a subsequence of {yn} and the latter converges to M ,

so does the former. So, f(r) = M . By definition of M , we have
f(x) ≤M = f(r) for all x ∈ [a, b].

To prove f attains a minimum value on [a, b], apply what we just
proven to the function −f(x). This gives us that −f(x) attains its
maximum value N at some point s. It follows that f(x) attaints its
minimum value (which is −N) at s. �

27. Monday, April 19

Definition 27.1. Suppose f is a function and r is a real number. We
say f is differentiable at r if f is defined at r and the limit

lim
x→r

f(x)− f(r)

x− r
exists. In this case, the value of this limit is the derivative of f at r
and is written as f ′(r) for short.

Remark 27.2. Notice that f(x)−f(r)
x−r is undefined when x = r. But this

is OK since in the definition of a limit, the function is not necessarily
defined at the limiting point.

Remark 27.3. For the limit limx→r
f(x)−f(r)

x−r there must be a positive real
number δ > 0 such that f is defined for all x satisfying 0 < |x− r| < δ.
Since we assume f is defined at r too, it follows that if f is differentiable
at r, then it is defined on (r − δ, r + δ) for some δ > 0.

Example 27.4. Let f(x) = x3 and let r be arbitrary. Then using that
x3 − r3 = (x− r)(x2 + xr + r2) we get

lim
x→r

f(x)− f(r)

x− r
= lim

x→r

x3 − r3

x− r
= lim

x→r
x2 + xr + r2 = 3r2.

This proves that f ′(r) = 3r2 for any real number r.

Example 27.5. Let f(x) =
√
x. For any r > 0 we have

lim
x→r

f(x)− f(r)

x− r
= lim

x→r

√
x−

√
(r)

x− r
= lim

x→r

x− r
(x− r)(

√
x+
√
r)

= lim
x→r

1√
x+
√
r

=
1

2
√
r

where the last step uses that limx→r
√
x =
√
r and other properties of

limits we have established.
Note that

√
x is not differentiable at 0.
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As you well know, the derivative of a function may again be regarded
as another function. In detail, if f is any function then its derivative
is the function f ′ whose value at x is f ′(x). The domain of f ′(x) is

{x ∈ R | f is differentiable at x}
In our fist example above, we have shown that the derivative of f(x) =
x3 is f ′(x) = 3x2, and the domain of f ′(x) is all of R. In the second we
showed that g(x) =

√
x is differentiable for all x < 0 and its derivative

is 1
2
√
x

for x > 0.

A somewhat technical but nevertheless useful result is:

Proposition 27.6. If f is differentiable at r, then f is continuous at r.

Proof. Using the Theorem about limits of sums, products etc. we get

lim
x→r

f(x) = lim
x→r

(f(r) + f(x)− f(r))

= f(r) + lim
x→r

f(x)− f(r)

x− r
· (x− r)

= f(r) + lim
x→r

f(x)− f(r)

x− r
· lim
x→r

(x− r)

= f(r) + f ′(r) · 0
= f(r).

This proves f is continuous at r. �

Let us give an example of a function that is not differentiable at a
point:

Example 27.7. Let f(x) = |x|. It is pretty clear at an intuitive level
that f is not differentiable at the point x = 0. To prove this carefully,

we need to show that limx→0
f(x)−f(0)

x−0 does not exist. Note

f(x)− f(0)

x− 0
=
|x|
x

=

{
1, if x > 0 and

−1, if x < 0.

Letting xn = 1
n

we have limn→∞ xn = 0 and limn→∞ f(xn) = 1 and

letting yn = −1
n

we have limn→∞ yn = 0 and limn→∞ f(yn) = −1. This
proves the limit does not exist.

28. Wednesday, April 21

All of the familiar rules from calculus concerning derivative of func-
tions are not too difficult to prove rigorously using what we have pre-
ciously established concerning limits. We list several of them here, but
prove only a few:
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Theorem 28.1. The following six facts are true.

(1) The derivative of a constant function is 0 at all points.
(2) If h(x) = x then h′(x) = 1.

For the remaining four parts, suppose f and g are two functions that
are both differentiable at a number r. Then:

(3) f + g is differentiable at r and (f + g)′(r) = f ′(r) + g′(r).
(4) For any constant c, cf is differentiable at r and (cf)′(r) =

cf ′(r).
(5) (“The Product Rule”) f ·g is differentiable at r and (f ·g)′(r) =

f ′(r)g(r) + f(r)g′(r).
(6) If g(r) 6= 0, then 1

g
is differentiable at r and

(
1

g

)′
(r) = − 1

g2(r)
g′(r).

Proof. For part (1), if f(x) = c for all x, then f(x)−f(r)
x−r = 0 for all x 6= r,

so limx→r
f(x)−f(r)

x−r = 0.
We skip (2).
For part (3), we note that

(f + g)(x)− (f + g)(r)

x− r
=
f(x) + g(x)− f(r)− g(r)

x− r
=
f(x)− f(r)

x− r
+
g(x)− g(r)

x− r
.

When we take the limit as x approaches r, this is f ′(r) + g′(r), using
the definition of f ′(r) and g′(r) and the fact that the limit of a sum of
two functions is the sum of the limits (when they both exist).

We skip (4) since it is similar.
For (5), using what we know about limits we get

lim
x→r

f(x)g(x)− f(r)g(r)

x− r
= lim

x→r

(
f(x)g(x)− f(r)g(x)

x− r
+
f(r)g(x)− f(r)g(r)

x− r

)
= lim

x→r
g(x) · lim

x→r

(
f(x)− f(r)

x− r

)
+ f(r) · lim

x→r

(
g(x)− g(r)

x− r

)
= g(r)f ′(r) + f(r)g′(r),

where for the last step we use that limx→r g(x) = g(r) since g is con-
tinuous at r (since differentiable implies continuous).
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For (6), we have

lim
x→r

1
g(x)
− 1

g(r)

1− r
= lim

x→r

g(r)− g(x)

g(x)g(r)(1− r)

= − lim
x→r

g(x)− g(r)

1− r
1

g(x)g(r)

= − lim
x→r

g(x)− g(r)

1− r
1

g(r) limx→r g(x)

= −g′(r) 1

g(r)g(r)

= − 1

g2(r)
g′(r).

In this chain of equalities, we have used that g(x) is continuous at r to
get limx→r g(x) = g(r). �

Remark 28.2. We can deduce the “Quotient rule” from parts (5) and
(6) above. Indeed, if f and g are differentiable at r and g′(r) 6= 0, then

(f/g)′(r) = (f · 1/g)′(r) = f(r)(1/g)′(r) + f ′(r)(1/g)(r) = f(r)(−g′(r))
g2(r)

+
f ′(r)
g(r)

= f ′(r)g(r)−f(r)g′(r)
g2(r)

.

Remark 28.3. Using parts (2) and (5) of this theorem, we can show
(by induction) that if f(x) = xn for any integer n ≥ 0, then f is
differentiable on all of R and we have f ′(x) = nxn−1 for all x.

Using that differentiation is linear, if f is a polynomial, so that
f(x) = anx

n + · · · + a1x + a0 for constants a0, . . . , an, we get that
f is differentiable on all of R and

f ′(x) = nanx
n−1 + · · ·+ a1.

For n ∈ Z such that n < 0, and (6) of the Theorem allows us to
conclude that if f(x) = xn then f ′(x) = nxn−1 in this case too.

Theorem 28.4 (Chain Rule). Suppose g is differentiable at s and f
is differentiable at g(s). Then f ◦ g is differentiable at s and

(f ◦ g)′(s) = f ′(g(s))g′(s).

Proof. Since f is differentiable at r = g(s), we have that

f ′(r) = lim
y→r

f(y)− f(r)

y − r
.

We can rewrite this by setting

d(y) =
f(y)− f(r)

y − r
− f ′(r)
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and observing that f is differentiable at r if and only if limy→r d(y) = 0.
At the moment, d(y) is not defined at y = r, but we can extend the
definition by setting

d(y) =

{
f(y)−f(r)

y−r − f ′(r) if y 6= r

0 if y = r.

By the limit condition for continuity, d(y) is continuous at y = r. The
point is that we can now write

f(y)− f(r) =
(
f ′(r) + d(y)

)
(y − r),

which holds for all y in the domain of f . Substituting y = g(x) (and
r = g(s)), we have an equality

f(g(x))− f(g(s)) =
(
f ′(g(s)) + d(g(x))

)
(g(x)− g(s)).

We can divide both sides to get

f(g(x))− f(g(s))

x− s
=
(
f ′(g(s)) + d(g(x))

)g(x)− g(s)

x− s
.

We want to take the limit as x approaches s of both sides. Since g
is continuous at x = s, and d is continuous at y = r = g(s), d ◦ g is
continuous, which implies that limx→s d(g(x)) = d(g(s)) = 0. Using the
algebra rules for limits and the definition of the derivative, we have that
the limit of the right hand side above is f ′(g(s)) · g′(s). By definition,
the limit of the left hand side is (f ◦ g)′(s). Thus, we have shown the
stated equality. �

Example 28.5. Say h(x) =
√
x4 + 1. Then h = f ◦ g where g(x) =

x4 + 1 and f(x) =
√
x. Since g is a polynomial, it is differentiable on

all of R and g′(x) = 4x3. The range of g is [1,∞) and as we showed
above f(x) is differentiable on all of (0,∞) and that f ′(x) = 1

2
√
x

at

such points. Using the Chain Rule we get that h(x) is differentiable on
all of R and that

h′(x) =
4x3

2
√
x4 + 1

.

29. Friday, April 23

Example 29.1. Consider the function f(x) =

{
x2 sin( 1

x
) if x 6= 0

0 if x = 0.

First, let’s consider whether f(x) is differentiable at x = 0.

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x2 sin( 1
x
)

x
= lim

x→0
x sin

(
1

x

)
= 0,
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as you computed on the homework. Thus f ′(0) = 0. If we take for
granted that sin′(x) = cos(x) for all x, then it follows from the chain
rule that f is differentiable for all x 6= 0 and in particular that f ′(x) =
2x sin( 1

x
)−cos( 1

x
) for x 6= 0. Altogether, we have that f is differentiable

on all of R, and

f ′(x) =

{
2x sin( 1

x
)− cos( 1

x
) if x 6= 0

0 if x = 0.

This derivative function is not continuous at x = 0. One way to see this
is to consider the two sequences { 1

2πn
}∞n=1 and { 1

2πn+π
}∞n=1 which both

converge to 0, but the resulting sequences after f ′ is applied converge
to 1 and −1, respectively, so limx→0 f

′(x) does not exist.

We now want to explore the relationship between derivatives and
local minima and maxima of functions. Here is the key fact.

Proposition 29.2. Let f be a function that is differentiable at r.

(1) If f ′(r) > 0, then there is some δ > 0 such that f(x) > f(r) for
all x ∈ (r, r + δ) and f(x) < f(r) for all x ∈ (r − δ, r).

(2) If f ′(r) < 0, then there is some δ > 0 such that f(x) is defined
and f(x) < f(r) for all x ∈ (r, r + δ) and f(x) > f(r) for all
x ∈ (r − δ, r).

Proof. We focus on the first statement. Suppose that f ′(r) > 0. By

definition, we have that limx→r
f(x)−f(r)

x−r = f ′(r) > 0. Thus, there is

some δ > 0 such that f(x)−f(r)
x−r is defined and f(x)−f(r)

x−r > 0 for all x such
that 0 < |x−r| < δ. (Why?) Now, if x ∈ (r, r+δ), then 0 < |x−r| < δ
and x− r > 0, so f(x)− f(r) > 0 and hence f(x) > f(r). Similarly, if
x ∈ (r − δ, r), then 0 < |x− r| < δ and x− r < 0, so f(x)− f(r) < 0
and hence f(x) < f(r). This proves the first statement.

The proof of the second statement is similar (or we can apply the
first statement to −f(x)). �

The following Theorem records a fact you should recall from Calcu-
lus: if a function has a local minimum or local maximum at a point
(and it is differentiable there), then its derivative must vanish at that
point.

Theorem 29.3 (Min-Max Theorem). Assume f is differentiable at r
and that for some open interval (a, b) contained in the domain of f
with r ∈ (a, b), f attains its maximum or minimum value on (a, b) at r
(i.e., assume either f(r) ≥ f(x) for all x ∈ (a, b) or f(r) ≤ f(x) for
all x ∈ (a, b)). Then f ′(r) = 0.
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Remark 29.4. The converse of this theorem is not true.
For one example, take f(x) = x3 − 3x on the interval (−4, 4) with

x = 1; we have f ′(1) = 0, but, since f(−3) = −18 < f(1) = −2 <
f(3) = 18, f attains neither a minimum nor a maximum at x = 1.
However, 1 is a minimum for f on the smaller interval (0, 2).

For another example, take f(x) = x3 on the interval (−1, 1) with
x = 0; this is neither a minimum nor maximum for f on this interval.
Moreover, 0 is not a minimum nor a maximum for f on any interval.

30. Monday, April 26

Proof. Assume f is differentiable at r, r ∈ (a, b), and f is defined on all
of (a, b). We need to show that if f attains its minimum or maximum
value on (a, b) at r, then f ′(r) = 0. Let us prove the contrapositive:
Assume f ′(r) 6= 0. Our goal is to show f does not obtain its maximum
nor its minimum value on (a, b) at r.

Since f ′(r) 6= 0, then either f ′(r) > 0 or f ′(r) < 0.
If f ′(r) > 0, then by the previous proposition, there is some δ > 0

such that f(x) > f(r) for all x ∈ (r, r + δ). We can pick an x value
that is in this interval and also in (a, b), for example, the minimum of
r+ δ/2 and (r+ b)/2; this x value gives a larger value of f(x) on (a, b),
so f does not attain its maximum at r. Likewise, we have f(x) < f(r)
for all x ∈ (r− δ, r), and we can pick an x value in this interval that is
also in (a, b) to see that f does not attain a minimum at r.

The argument in the case f ′(r) < 0 is similar. �

Corollary 30.1. Suppose f is continuous on the closed interval [a, b].
Then f attains its maximum and minimum values on [a, b] and both of
these occur at points x such that one of the following conditions hold:

(1) x = a,
(2) x = b,
(3) f is differentiable at x and f ′(x) = 0, or
(4) f is not differentiable at x.

Proof. The Extreme Value Theorem shows that f attains its maximum
and minimum — say its maximum occurs at r and its minimum occurs
at s. We need to show that r = a, r = b, f ′(r) = 0, or f is not
differentiable at r, and similarly for s.

Assume the first, second and fourth conditions do not hold — i.e.
assume r 6= a, r 6= b and that f is differentiable. Then by the Min-Max
Theorem, f ′(r) = 0.

Similarly one shows that one of these four properties holds for s. �

Remark 30.2. Each of the four cases above is possible. For example:
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• f(x) = x achieves its maximum on [−1, 1] at x = 1 and its
minimum on [−1, 1] at x = −1, but f ′(x) = 1 6= 0 at both of
these points.
• f(x) = |x| achieves its minimum on [−1, 1] at x = 0, where f

is not differentiable.

Theorem 30.3 (Rolle’s Theorem). Assume f is continuous on the
closed interval [a, b] and differentiable at every point of (a, b). If f(a) =
f(b) = 0, then there exists a c ∈ (a, b) such that f ′(c) = 0.

Proof. By the EVT Theorem f attains a maximum value M and a
minimum value m on [a, b]. If m = M then f is a constant function
and in this case f ′(c) = 0 for every c in (a, b). Otherwise, we either
have M > 0 or m < 0. If M > 0, then choose a c so that f(c) = M .
Note that c ∈ (a, b), and so by the Corollary to the Min-Max Theorem,
since we assume f is differentiable at c, we must have f ′(c) = 0.

Similarly, if m > 0, then choose a c so that f(c) = m. The same
reasoning shows f ′(c) = 0. �

Corollary 30.4 (The Mean-Value Theorem). Assume f is continuous
on the closed interval [a, b] and differentiable at every point of (a, b).
Then there exists a c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. The trick is to “tilt” f(x) so that we can apply Rolle’s Theorem.
That is, let

g(x) = f(x)− l(x)

where l(x) is the linear function satisfying l(a) = f(a) and l(b) = f(b)
— in detail,

l(x) =
f(b)

b− a
(x− a) +

f(a)

b− a
(x− b).

Then g is continuous on [a, b], differentiable on (a, b) and we have g(a) =
0 and g(b) = 0. By Rolle’s Theorem, there is a point c ∈ (a, b) such
that g′(c) = 0. But

g′(x) = f ′(x)− l′(x) = f ′(x)− f(b)

b− a
+
f(a)

b− a
= f ′(x)− f(b)− f(a)

b− a
.

and so the fact that g′(c) = 0 gives that

f ′(c) =
f(b)− f(a)

b− a
.

�

The MVT has many applications. Here is one:
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Corollary 30.5. Suppose I is an open interval (that is, I = (a, b),
(a,∞), (−∞, b) or (∞,∞)) and f is differentiable on all of I.

(1) f ′(x) ≥ 0 for all x ∈ I if and only if f is increasing on all of I.
(2) f ′(x) ≤ 0 for all x ∈ I if and only if f is decreasing on all of I.
(3) f ′(x) = 0 for all x ∈ I if and only if f is a constant function

on I.

Remark 30.6. Remember that, by definition, f is increasing on I if and
only if f(a) ≤ f(b) for all a ≤ b, and similarly for decreasing.

Proof. For part (1), assume f ′(x) ≥ 0 for all x ∈ I. Pick any two points
a, b ∈ I with a < b. Since f is differentiable at every point of [a, b], it is
continuous at every point in [a, b] too. So, we have that f is continuous
on [a, b] and differentiable on (a, b), and hence, by the MVT, there is a
c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Since b− a > 0 and f ′(c) ≥ 0, it follows that f(b) ≥ f(a). This proves
f is increasing on I.

For the converse we prove instead the contrapositive. Assume there
is a point x ∈ I such that f ′(x) < 0. We will show that f is not
increasing. Since f ′(x) < 0, as we showed in the proof of Min-Max
Theorem, there is a δ > 0 such that for all y such that x < y < x + δ
and y ≤ b, we have f(y) < f(x); i.e. f is not increasing.

The proof of (2) is very similar — or we can deduce (2) from (1) by
considering −f(x).

For (3), we already know that if f is the constant function then
f ′(x) = 0 for all x. If f ′(x) = 0 for all x ∈ I, then by (1) and (2), f is
both increasing and decreasing on all of I, and this only occurs when
f is constant. �
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