Differential operators exercises

(1) Show that $\mathbb{C}\left[\begin{array}{lll}x_{1} & \cdots & x_{n} \\ y_{1} & \cdots & y_{n}\end{array}\right]$ has no nonconstant $\mathrm{SL}_{2}(\mathbb{C})$-invariants of multidegree $(d, 0, \ldots, 0)$.
(2) If R is an A-algebra (any commutative rings), then $\operatorname{gr}\left(D_{R \mid A}^{\bullet}\right)$ is commutative.
(3) If R is an A-algebra (any commutative rings), and $W \subset R$ is a multiplicative set, then $P_{W^{-1} R \mid A}^{n} \cong P_{W^{-1} R \mid(W \cap A)^{-1} A}^{n}$ and $D_{W^{-1} R \mid A}^{n} \cong D_{W^{-1} R \mid(W \cap A)^{-1} A}^{n}$.
(4) If S is a polynomial ring over A, and I an ideal of S, then $\left\{\delta \in D_{S \mid A}^{n} \mid \delta(S) \subseteq\right.$ $I\}=I D_{S \mid A}^{n}$.
(5) If S is a polynomial ring over A, then $D_{S \mid A}$ is a finitely generated A-algebra if and only if $\mathbb{Q} \subseteq A$.
(6) Show that $\mathbb{F}_{p}(t)[x]_{\left(x^{p}-t\right)}$ does not have any quasicoefficient field, and find a coefficient field for its completion.
(7) Let (R, \mathfrak{m}, k) be a local K-algebra, and $\gamma \in R$ with image $\lambda \in k$. Let $f(T) \in$ $K[T]$. Show that

$$
1 \otimes f(\gamma)-f(\lambda) \otimes 1 \in(1 \otimes \gamma-\lambda \otimes 1) \cdot\left(k \otimes_{K} R\right)
$$

(8) Let R be a local ring that is module-finite over a coefficient field K. Show that $D_{R \mid K}=\operatorname{Hom}_{K}(R, R)$.
(9) Let $R=\mathbb{C}\left[x^{2}, x^{3}\right] \subset S=\mathbb{C}[x]$. Show that, for $t<-2$, the vector space $\left[D_{R \mid \mathbb{C}}\right]_{t} / \overline{x^{2}}\left[D_{S \mid K}\right]_{t-2}$ is two-dimensional.
(10) Let G be a finite group acting linearly on a polynomial ring R over an algebraically closed field K. Let \mathfrak{n} be a maximal ideal of R such that $g(\mathfrak{n}) \neq \mathfrak{n}$ for all $g \in G \backslash\{e\}$, and let $\mathfrak{m}=\mathfrak{n} \cap R^{G}$. Then $\mathfrak{m} R=\bigcap_{g \in G} g(\mathfrak{n})$.
(11) If $R \rightarrow S$ is a map of A-algebras, and $\alpha_{n}: S \otimes_{R} P_{R \mid A}^{n} \rightarrow P_{S \mid A}^{n}$ is the natural map, then the composition

$$
D_{S \mid A}^{n} \cong \operatorname{Hom}_{S}\left(P_{S \mid A}^{n}, S\right) \xrightarrow{\operatorname{Hom}\left(\alpha_{n}, S\right)} \operatorname{Hom}_{S}\left(S \otimes_{R} P_{R \mid A}^{n}, S\right) \cong \operatorname{Hom}_{R}\left(P_{R \mid A}^{n}, S\right) \cong D_{R \mid A}^{n}(R, S)
$$

is just the restriction map.
(12) Let R be a polynomial ring over a field K of characteristic zero. Let G act on R linearly by

$$
g\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=A\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \quad \text { for } g \in G, A \text { an } n \times n \text { matrix. }
$$

Then the action of G on $D_{R \mid K}$ by conjugation is given by

$$
g\left(\begin{array}{c}
\overline{x_{1}} \\
\vdots \\
\overline{x_{n}} \\
\frac{\partial}{\partial x_{1}} \\
\vdots \\
\frac{\partial}{\partial x_{n}}
\end{array}\right)=\left[\begin{array}{cc}
A & 0 \\
0 & \left(A^{T}\right)^{-1}
\end{array}\right]\left(\begin{array}{c}
\overline{x_{1}} \\
\vdots \\
\overline{x_{n}} \\
\frac{\partial}{\partial x_{1}} \\
\vdots \\
\frac{\partial}{\partial x_{n}}
\end{array}\right) \quad \text { for } g \in G .
$$

(13) Let p be a prime number. Show that

$$
\binom{a}{p^{e}-1} \equiv\left\{\begin{array}{lll}
1 & \bmod p & \text { if } a \equiv p^{e}-1 \\
\bmod p^{e} \\
0 & \bmod p & \text { otherwise }
\end{array}\right.
$$

(14) Let $\overline{D_{R \mid A}^{1}}$ be the kernel of the map $D_{R \mid A}^{1} \rightarrow R$ given by evaluation at 1 . Show that $\overline{D_{R \mid A}^{1}}$ is the module of A-linear maps from R to R that satisfy the Leibniz rule $\partial(x y)=x \partial(y)+y \partial(x)$.
(15) Let $R=A\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over some ring A, and

$$
\eta=\left[\frac{1}{x_{1} \cdots x_{n}}\right] \in \frac{R_{x_{1} \cdots x_{n}}}{\sum_{i=1}^{n} R_{x_{1} \cdots x_{i} \cdots x_{n}}}=H_{\left(x_{1}, \ldots, x_{n}\right)}^{n}(R) .
$$

Show that the annihilator of η in $D_{R \mid A}$ is the left ideal of $D_{R \mid A}$ generated by $\left(x_{1}, \ldots, x_{n}\right)$.
(16) Check that if A is any commutative ring, and R is a polynomial ring over A, graded with $[R]_{0}=A$ and each variable has degree one, that the restriction map

$$
D_{R \mid A}^{i} \xrightarrow{\text { res }} \operatorname{Hom}_{A}\left([R]_{\leq i}, R\right)
$$

is bijective.
(17) Let $A \rightarrow R \rightarrow S$ be commutative rings and M, N two S-modules. Show that

$$
D_{S \mid R}^{i}(M, N) \subseteq D_{S \mid A}^{i}(M, N) \subseteq D_{R \mid A}^{i}(M, N)
$$

(18) For a polynomial ring over a field, we have

$$
\left[\overline{x^{\alpha}} \partial^{(\beta)}, \overline{x_{i}}\right]=\overline{x^{\alpha}} \partial^{\left(\beta-e_{i}\right)} \quad \text { and } \quad\left[\overline{x^{\alpha}} \partial^{(\beta)}, \partial^{\left(e_{i}\right)}\right]=-\alpha_{i} \overline{x^{\alpha-e_{i}}} \partial^{(\beta)} .
$$

(19) Show that if K is a field, $R=K\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial ring, I is an ideal of R, and i is a positive integer, then $H_{I}^{i}(R)$ is either zero or a faithful R-module, by using the fact that this is true whenever K is a perfect field.
(20) Let $R=\mathbb{C}[y] \rightarrow S=\mathbb{C}[x]$ via $y \mapsto x^{2}$. Show that the differential operator $\frac{\partial}{\partial y}$ on R does not extend to a differential operator on S.
(21) Show that, for $R=\mathbb{C}[x, y] /(x y)$, gr ${ }^{\text {ord }}\left(D_{R \mid \mathbb{C}}\right)$ is not Noetherian.
(22) Show that, for $R=\mathbb{C}[x, y] /(x y), D_{R \mid \mathbb{C}}$ is both left and right Noetherian.

