K field of char o

$$
R=k\left[x_{1}, \ldots, x_{n}\right]
$$

M fog $D_{\text {RIV }}-$ mod le

$$
\Rightarrow \operatorname{gr}\left(M, G^{*}\right) \text { as a } g^{\operatorname{Br}(}\left(D_{\text {AK }}^{N}\right) \text {-module }
$$

for G° good compact wish Der.
 the support variety of M.
Exercise: The support variety of a fIg- $D_{R 1}$-module is independent of the choice of G_{0}, but ann $\operatorname{graer}\left(D_{\text {puls }}\left(\operatorname{gr}\left(M, G^{\circ}\right)\right)\right.$ is not.
$\operatorname{dim}(M)=\operatorname{dim}(\operatorname{supp}$ variety of $M)$
Recall: A holonomic Dimodule is fig. D-modute of $\operatorname{dim} n$ (where $R=K\left[x_{1}, \ldots, x_{n}\right]$, k field char 0$]$.

Prop: K field char O, $R=k\left[x_{1}, \ldots, x_{u}\right]$, M D-module (not a priorif.g.) If hare is a filtration F o on M compatible with Per st. $\exists C>0$:

$$
\operatorname{dim}_{k}\left(F^{t}\right) \leqq C t^{n} \text {, for all } t \gg 0
$$

Sem M is fin.gen., and hence holonomr.

Pf: Want to show tent M3 a Noethwian D-modute, which implies Fig. It suffices to show that every chain of fig. submodules stabilizes.
If $L^{* 0} \subseteq M$ is fog., then $F \cdot \cap L$ is a filtration on L of $\operatorname{dim} \leq n$ since $\operatorname{dim}_{k}\left(F^{t} \cap L\right) \leq \operatorname{dim}_{k}\left(F^{t}\right)$. By Bernstein's inequality, $\operatorname{dim}(L)=n$. Then, $e_{n}\left(F^{\bullet} \cap L\right) \leq e_{n}\left(F^{\cdot}\right) \leqslant n!C$. By lemma from last time,

$$
e(L) \leq e_{n}(F \cdot \cap L) \text {, so } e(L) \leq n!C \text {. }
$$

Thus, if $O \nsubseteq L_{1} c_{\ddagger} L_{2} c_{\ddagger} L_{3} \nsubseteq \ldots$ is a chain of lysubmodles (proper),
we have $e\left(L_{i}\right) \supsetneqq e\left(L_{i-z}\right)$ each i, So $e\left(L_{i}\right) \geqslant i$, but $e\left(L_{i}\right) \leq n!C$, so the chain cannot consist of n! C modules.

Romp: In the context of last prop, suffices to show $\operatorname{dim}_{k}(F t)$ is bounded by a polynomial of degree n.
Prop: K field of char $O, R=k\left[x_{1}, \cdots, x_{n}\right]$. Let M be solononic. Thu for any $f \in R$, M_{f} is holonomic
pf: Let G be a good filtration on M. Let f have degree at most a $(f \in[R] \leq a)$.

Then $\bar{f} \in B^{a}$.
Set $F_{i}^{t}=\frac{1}{f^{t}} \cdot F^{(a+1) t}$.
If $\frac{m}{f t} \in F^{t}$, so $m \in \sigma^{(a+1) t}$, then $\bar{x}_{i} \cdot \frac{m}{f^{t}}=\frac{x_{i} \cdot m}{f^{t}}=\frac{\bar{x}_{i} f \cdot m}{f^{t+1}}$
with $\bar{x}_{i} f: m \in B^{a+1} G^{(a+1) t} \leq G^{(a+1)(t+1)}$

$$
B^{1+1} A_{B^{a}} \frac{1}{G^{(k)}}
$$

$$
\in \frac{1}{f^{(t+1}} G^{(a+1)(t+1)}=F^{t+1}
$$

Thus, $B^{1} \cdot F^{t} \leq F^{t+1}$
since $B^{s}=\sqrt[B^{2} \cdots B^{2}]{\sqrt{s}}$, get that
F. is compatible with Ber.

Then, $\operatorname{dim}_{k}\left(\mathbb{F}^{t}\right)=\operatorname{dim}_{k}\left(\frac{1}{f^{t}} \cdot G^{(a+1) t}\right)$

$$
\begin{aligned}
& =\operatorname{cim}_{k}\left(G^{(a+1) t}\right) \\
& =\frac{e(M)}{n!}((a+1) t)^{n}+\begin{array}{c}
\text { oweer. } \\
\text { ofer } \\
\text { term }
\end{array} \\
& =\frac{e(M)(a+1)^{n}}{n!} t^{n}+\text { L.OT. }
\end{aligned}
$$

Then, by last Proposition, Mf is hotonomil.

Th'm: Let k field of charo, $R=k\left[x_{1}, \ldots, x_{n}\right]$, M holonomic D-module. For anyideal $I \subseteq R$, $H i(M)$ is holonomic. In particular $H \bar{\prime}(R)$ is holononic.

Pf：The Tech complex on a jon．Set for I is a complex of holonomic D－modiles Since submods is quot． mods of hoo mods．ate kolo． cohomology of coach couptex is halo．田
Ex：Localization at an alibitiarly mu H．set is not necessality hobo． moreover，is not necessarily fog． as D－module．If $R=\mathbb{C}[x]$ ， $M=\mathbb{C}(x)$ ，then $M_{\text {is not }}$ fingen：otherwise write $\mu=D_{R(c)} \cdot\left\langle\frac{r_{1}}{s_{1}}, \ldots, \frac{r_{t}}{s_{t}}\right\rangle$ ．

Have $\frac{r_{1}}{s_{1}}, \ldots, \frac{r_{t}}{s_{t}} \leq R_{s_{1}} \ldots s_{t}$ ，which
is a Drke-module, 50

$$
D_{R(\mathbb{C}} \cdot\left\langle\frac{r_{1}}{s_{1}}, \ldots-\frac{\sqrt{t}}{s_{t}}\right\rangle \subseteq R_{g_{1} \ldots s_{t}} \not \approx
$$

The same argunaonf shows that only D-mod fag. Localizations are localization of form R_{f}.
 If $M 13$ simple, then Ass pr (μ) is a singleton.
pf: For $P \in A s s_{R}(M), H_{p}^{0}(M)$ is nonzero, since $R / p \longrightarrow M$, and

$$
\begin{aligned}
& H_{p}^{0}(M)=\operatorname{ker}\left(M \Longrightarrow \oplus M_{f_{i}}\right)= \\
& \quad=\left\{m \in M \mid \exists t: p^{t} m=0\right\}
\end{aligned}
$$

\& image of R / P in M is contained in in $H\left(\begin{array}{l}\text { Pr }\end{array}(M)\right.$.

Since μ is simple and $H_{p}^{0}(M)$ is a $D_{\text {RIA }}$-subanodilea $H_{P}^{0}(M)=M$.
Then, if $P, Q \in A_{s_{k}}(M), \exists m \in M$ with $\operatorname{ann}_{R}(m)=Q$, so $\exists n$: $P^{n} \subseteq \operatorname{ann}_{R}(m)=Q$, so $P \subseteq Q$. Likewise $Q \leq P$, so $P=Q$.
Thim[Lyubezuik]: k field of chard $R=K\left[x_{1} \ldots, x_{i n}\right]$, the any holonomic D-module ${ }^{M}$ has finitely Comely assoc. primes as an R-moutle. In particular, any Hicich) hos finitely many assoc primes.

PA：Take a filtration o M by simple D－modles （can d_{0} since $\left.l_{D_{R k}}(M)<\infty\right)$ ）

$$
0 \subseteq M_{0} \subseteq M_{1} \subseteq M_{2} \subseteq \ldots \subseteq M_{l}=M
$$

Have $\operatorname{Ass}_{R}\left(M_{i}\right) \subseteq A s s\left(M_{i-1}\right) \cup A_{s}\left(M_{i} M_{M_{-1}}\right)$
By induction on i ，each M_{i} ， in particular $M_{l}=\mu_{\text {r }}$ has finitely man g associated primes．国
This is not true in general for Noetherian rings！

Ex $[$ singh $]$: Let $R=\frac{\mathbb{\#}[u, v, w, x, y, z]}{(u x+v y+w z)}$.
will show that $H_{(u, v, w)}^{3}(R)$ has infinitely many associated primes.
We are looking at

$$
\begin{aligned}
& R_{u v} \oplus R_{v w} \oplus R_{u w} \rightarrow \underset{\sum_{\text {chomblogye here }}}{R_{u v w} \rightarrow 0} \\
& \text { so } H_{(u, v, w)}^{3}(\mathbb{R})=\frac{R_{u v w}}{i u\left(R_{u v} \oplus R_{u w} \oplus R_{v \omega}\right)} .
\end{aligned}
$$

Can write any element as
$[r \in R$

$$
\left[\frac{r}{(u \vee \omega) t}\right] \text { some } \begin{array}{ll}
r \in R \\
& t \in \mathbb{N}
\end{array}
$$

We have $\left[\frac{r}{(u v \omega)^{t}}\right]=0 \Leftrightarrow \frac{r}{(u v \omega)^{t}}=\frac{r_{7}}{(u v)^{a}}+\frac{r_{2}}{(u \omega)^{2}}+\frac{r_{3}}{\left((v u)^{2}\right.}$

$$
\begin{aligned}
& \mathcal{F} \sqrt{1}, \sqrt{2}_{2}, \sqrt{3} \in R \\
& a, b, c \in \mathbb{N} \\
& \Leftrightarrow \frac{r}{(u v \omega)^{t}}=\frac{r_{1}}{(u v)^{t+k}}+\frac{r_{2}}{(v e)^{t+k}}+\frac{r_{3}}{(r \omega)^{t+k}} \\
& \exists r_{1}, r_{2}, r_{3} \in R \\
& \exists k \in \mathbb{N} \\
& \Longleftrightarrow r(u v \omega) k=r_{1} \omega^{t+k}+r_{2} v^{t+k}+r_{3} u^{t+k} \\
& \exists r_{1}, r_{2}, r_{3} \in R \\
& \exists k \in \mathbb{N} \\
& \Longleftrightarrow \exists k \in \mathbb{N}: \Gamma(u v \omega)^{k} \in\left(u^{t+k}, v, w^{t+t^{t}}\right) .
\end{aligned}
$$

