Last time: Defined opposite sings, which are "same" except with multiplication $\checkmark \otimes s=s r$.
$\operatorname{aut}\{(x):(x)$ right Noetherian
(xy):(xy) right Noetherian
$x D_{\left.\frac{k[x, y]}{(x y)} \right\rvert\, k}$ right Nozherian
Goal: to show $((x y):(x y)) \simeq((x y):(x y))^{\circ P}$.
Want to see this symmetry property for polynomial rings first.
$\frac{\text { Rake }}{\text { them }}$ It $: T \rightarrow T^{o p}$ nomomorighisu, then $\alpha: T^{\infty} \rightarrow T$ is also a honour. clear for $t,-$, and

$$
\begin{aligned}
\alpha(r * s)=\alpha(s r) & =\alpha(s) \alpha \alpha(r) \\
& =\alpha(r) \alpha(s)
\end{aligned}
$$

A ring Bomorighism $T \rightarrow T^{\text {op }}$ is also called an antissomurghism $T \rightarrow T_{\text {. }}$
Lem: Let $\alpha, \beta, \gamma, \delta, \varepsilon \in \mathbb{N}^{n}$

1) $\binom{\alpha+\beta}{\gamma}=\sum_{\delta+\varepsilon=\gamma}\binom{\alpha}{\delta}\binom{\beta}{\varepsilon}$
2) $\sum_{\beta \leq \alpha}(-1)^{\beta}\binom{\alpha}{\beta}=0$ if $\alpha \neq 0$
$\left(\beta_{i} \leq \alpha_{i} \text { each }\right)^{2}(=1$ if $\alpha=0)$
pref: Exercise (follow from usual(binomial coetf.idutities).

Prop: Let A be onus, α ring, $R=A[x] p o l$,
$\operatorname{ten} \partial^{(\alpha)} \overline{7}=\sum_{\beta+\gamma=\alpha} \partial^{(\beta)}(f) \cdot \partial^{(\gamma)}$ in $D_{R \mid A}$.
Bf. First, let $f=x^{\mu}$ monomial. suffices to check the equality by plugging in x^{σ} to with sides.

We have

$$
\begin{aligned}
& \left(\partial^{(\alpha)} \bar{x}^{\mu}\right)\left(x^{\gamma}\right)=\binom{\mu+\sigma}{\alpha} x^{\mu+\sigma-\alpha} \\
& \text { and } \\
& \sum_{\beta+\gamma=\alpha} \frac{\partial^{(\beta)}\left(x^{\mu}\right)}{\partial^{(\gamma)}\left(x^{\sigma}\right)} \\
& =\sum_{\beta+\gamma=\alpha}\binom{\mu}{\beta} x^{\mu=\beta}\binom{\sigma}{\gamma} x^{\sigma-\gamma} \\
& =\sum_{\beta+\sigma=\alpha}\binom{\mu}{\beta}\binom{\sigma}{\gamma} x^{\mu+\sigma-\alpha}
\end{aligned}
$$

equal by lemma.
For general $f=\sum_{\sigma} a_{\sigma} x^{\sigma}$,

$$
\begin{aligned}
& \partial^{(\alpha)} \bar{f}=\partial^{(\alpha)} \cdot\left(\overline{\sum_{\sigma} a_{\sigma} x^{\sigma}}\right) \\
& =\sum_{\sigma} a_{\sigma} \partial^{(\alpha)} \bar{x}^{\sigma}=\sum_{\sigma} a_{\sigma}\left(\sum_{\beta+\gamma=\alpha} \overline{\partial^{(\beta)}\left(x^{(\gamma)} \partial^{(\gamma)}\right.}\right) \\
& =\sum_{\beta ; \gamma=\alpha} \bar{\partial}^{(\beta)}(f) \partial^{\gamma} .
\end{aligned}
$$

Prop (Quinkn-Gallego): For $R=A[x]$ poly ring, the map $D_{R / A} \xrightarrow{*} D_{\text {RIA }}^{\circ P}$ given by

$$
\psi\left(\bar{r} \partial^{(\alpha)}\right)=(-1)^{|\alpha|} \partial^{(\alpha)} \bar{r}
$$

is a ring Bomarphism.
(where $|\alpha|=\alpha_{2}+\cdots+\alpha_{n}$).
Does this specify a vique map?
yes since Do yes, since $D_{R 1 A}=\bigoplus_{\alpha} \bar{R} \partial^{(\alpha)}$.
ff: Need to show this is multiplicative. Since any eft. is a sum of elements of the
form $\bar{r} \partial^{(\alpha)}$ suffices to show form $\bar{r} \partial^{(\alpha)}$, scffices to show

$$
\begin{aligned}
& \psi\left(\bar{r} \partial^{(\alpha)} \bar{s} \partial^{(\beta)}\right) \stackrel{?}{=} \psi\left(\bar{r} \partial^{(\alpha)}\right) * \frac{\psi\left(\bar{r} \partial^{(r)}\right)}{\|} \\
& \psi(\bar{r}) * \psi\left(\partial^{\alpha}\right) \otimes \psi(\bar{s}) * \psi\left(\partial^{(4)}\right)
\end{aligned}
$$

So, suffices to show
i) $\psi(\bar{r} \delta)=\psi(\bar{r}) \otimes \psi(\delta)$ any $r \in R$
ii) $\psi\left(\delta \partial^{(\alpha)}\right) \psi(\delta) \quad \psi\left(\partial^{(\alpha)} \quad \delta \in D_{\text {R } 14}\right.$
ii) $\psi\left(\delta \partial^{(\alpha)}\right)=\psi(\delta) \otimes \psi\left(\partial^{(\alpha)}\right)$ any $\alpha, \delta \in D_{R A A}$
iii) $\psi\left(\partial^{(\alpha)} \bar{r}\right)=\psi\left(\partial^{(\alpha)}\right) \nsim \psi(\bar{r}) \quad$ any $\alpha, r \in R$.
i) We can write, wLOG, $\delta=s \delta^{(\alpha)}$.

$$
\begin{aligned}
\psi\left(\bar{r} \bar{s} \partial^{(\alpha)}\right)=(-1)^{|\alpha|} \partial^{(\alpha)} \overline{r s} & =\left((-1)^{|\alpha|} \partial^{(\alpha)} \bar{s}\right) \bar{r} \\
& =\psi(\underline{r}) \phi(\underbrace{(\alpha)})
\end{aligned}
$$

ii) Similar.

$$
\begin{aligned}
& \text { iii) } \psi\left(\partial^{(\alpha)} \bar{r}\right)=\psi\left(\sum_{\beta+\gamma=\alpha} \overline{\partial^{(\beta)}(r)} \partial^{(\gamma)}\right) \\
& =\sum_{\beta+\gamma=\alpha}(-1)^{|\gamma|} \partial^{(\gamma)} \overline{\partial^{(\beta)}(r)} \\
& =\sum_{\beta+\gamma=\alpha}(-1)^{|\gamma|}\left(\sum_{\delta+\varepsilon=\gamma} \overline{\partial^{(\delta)}\left(\partial^{(\beta)}(r)\right)} \partial^{(\varepsilon)}\right) \\
& \left.=\sum_{\beta+\delta+\varepsilon=\alpha}(-1)^{|\delta+\varepsilon|} \overline{(\beta+\delta)} \begin{array}{l}
\beta
\end{array}\right) \partial^{(\beta+\delta)}(r) \\
& \partial^{(\varepsilon)}
\end{aligned}
$$

$$
\left.=(-1)^{|\alpha|} \sum_{\varepsilon+\xi=\alpha}\left(\sum_{\beta+\delta=\xi}(-1)^{|\beta|}(\xi)\right) \overline{\partial^{(\xi)}}-(\xi)\right]
$$

By Leman $\zeta=0$ for $\xi \neq 0$ and $=1$ for $\varphi=0$.
so this is just $(-1)^{|\alpha|} \bar{r} \partial^{(\alpha)}$.
Thus, ψ is multiplicative, so is a hourmarphism.
Then $\psi: D_{R A}^{O P} \rightarrow D_{R \mid A}$ is also a homomorghism.

$$
\begin{aligned}
\psi^{2}(\bar{r}) & =\bar{r} \\
\psi^{2}\left(\partial^{(\alpha)}\right) & =\psi\left((-1)^{(\alpha)} \partial^{(\alpha)}\right) \\
& =(-1)^{|\alpha|}(-1)^{(\alpha)} \partial^{(\alpha)}=\partial^{(\alpha)}
\end{aligned}
$$

Thus, $\psi^{2}=i d$. on $D_{R / A}$, so
$\psi i 3$ an $s o m o t p h i s m$.
conclusion: Flipping multi. order and switching sign on $3 / x_{i}$ is antismoppism.
of DeA 2.
This is sometimes called the Fourier transform on $D_{c \text { It rice }}$.

Now, show sone symmetry property for the operators that preserve a prictpal ia bal.
Prop: Let A be a sing, $R=A[\pm]$ poly ring, and fest nonzerodivisor. Then the $\left.\operatorname{map}\left((f):{\dot{D_{R I A}}}^{(f)}\right)^{\alpha}\right)\left(f(f)_{i_{\text {RH }}}(f)\right)^{\varphi}$ given by $\alpha(\delta)=\bar{f} \psi(\delta) f^{-1}$ is an Isomorphism, where $\psi: D_{R / A} \rightarrow D_{R H}$ is the previous iso.
pr. Given $\delta \in(f):(f)$, we have $\delta(f R) \leq f R$,

$$
(\delta \bar{f})(R) \leqslant f R .
$$

Noterts since $f \in R$ is a nonzero divisor,
the map $f R \xrightarrow{f^{2}} R$ is
well -defined.
Then $\left(\bar{f} \psi(\delta) \bar{f}^{-1}\right) \cdot(f R)$

$$
=(\bar{f} \psi(\delta))(R) \leq f R \text {, s } \delta
$$

The map is well-defined.

$$
\begin{aligned}
& \text { What is } \xrightarrow{f^{-1}} R ? \\
& \text { Given } f r \in f R \text { ? set } \\
& f^{-1}(f r)=r .
\end{aligned}
$$

Is well-dfined, since

$$
f r=f_{s} \Rightarrow f(r-s)=0 \Rightarrow r-s=0 \Rightarrow E s .
$$

Is also R-linear, since

Can also hinter of this as taking place inside of R_{f} : lave

$$
\begin{aligned}
& R \leq R_{f} \\
& \prod_{i} \cdot f^{-1} \\
& f R \leq R_{f}
\end{aligned}
$$

$$
\left(\bar{f} \psi(\delta) \bar{f}^{-1}\right)(R) \subseteq R
$$

Have $\bar{f}^{-1} \in D_{\text {Ref }^{\prime} A \text {; check }}$ containment above in $D_{\text {Ref }} 14$.

$$
\left.(F \psi(\delta))\left(\frac{r}{f}\right)\right) \in R
$$

$$
\left(\frac{\partial}{\partial x_{1}}\right)(r / f)=\frac{\frac{\partial r}{\partial x_{1}} f-\frac{\partial f^{2}}{\partial x_{1}} r}{f^{2}}
$$

might not be in $\frac{1}{7} R$.
couse backe to this lateor.

$$
\begin{aligned}
& R=k[x] \quad \text { Qi } I_{s} \alpha(\underline{\delta})(\underline{R}) \leq \underline{R} ? \\
& f=x \\
& \alpha(\delta)=\bar{x} \psi(\delta) \bar{x}^{-1} \\
& \delta=\underset{r}{ } \partial^{(\beta)} \\
& \alpha\left(r \partial^{(\beta)}\right)=\bar{x}(-1)^{\mid \beta} \cdot \overline{x^{\prime}} \bar{x}^{-1}
\end{aligned}
$$

Qi Is $\alpha\left(\partial^{(\beta)}\right) \in D_{\text {RIK }} \stackrel{N}{\text { ? special }}$

$$
\begin{aligned}
& \alpha\left(\partial^{(\beta)}\right):(\bar{x}\left.\partial^{(\beta)} \bar{x}^{-1}\right) \\
& \alpha\left(\partial^{(\beta)}\right) \cdot 1 \\
&=\bar{x} \partial^{(\beta)}\left(\frac{1}{x}\right) \\
&=\bar{x} \frac{1}{\beta!} \dot{\partial}^{\beta}\left(\frac{1}{x}\right) \\
&=\bar{x} \cdot \frac{1}{\beta!} \frac{(1-2 \cdots-\beta)}{x^{\beta+1}} \\
&=x^{-\beta}
\end{aligned}
$$

Quay need, for $\delta \in(A):(f)$ that $\delta(R) \leq R$.

