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and tight North .



From earlier
,
we have

( (x) :p
, *

(x)) - Kot;¥ J

( Ky) -

'Dragnet D=

⇐ ¥¥*¥i÷¥oii¥i¥¥¥¥
a
,b

[
= can :*.***hQdY' :*

,
)
.

As Dkk is a quotient ring
of Cxy ) : cxyj , it suffices
to show that cxys : cxg) isleftfright Noetherian .



Lene ( Cx) : *xD is right Noetherian .
Prf÷
,

call A :-c Cx ) : Cx)
,

which
a Subring of D:- DELTA .

Note that D= A ① K fail
,

as K - rectorspaces. Let J EA
be a right ideal i want to see
that J is finger .
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we are done

.

If HIATT
, pick PEJVEIA .

Since p⇐JEJD -

-CAD
,

Kou write



p - 2+81# t . .
- c-K¥5

I ¥
-

EJ
with Leif?A , titch ) . K

71

J J

←
no i.

here

claim : Tiff ECE)#KAJ .
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prfofc-G.in.. Just need to see that
each is in J. Will do a trick .
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By same argument I decreasing
induction on then i )

, get
that each 8iIxEJda*m✓J

Then
,
the claim implies that J
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. Puttogether,
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If T is a noncommutative

ring ,
then we can a

poly -ring over T with

commuting variables TEES
.



If T is an algebra over afield K
,
then TETetat KEI .

Exercise If T B leftfright
Noetherian

,
then TEI is

leftfright Noetherian .

[Hint. Usual proof of Hilbert Basis
theorem ]

Tim Etnipp] : ccxy) :Ky)) is
right Noetherian . Hence.DE#yipIkB
rightNoetherian .

Efcstated : Let 5- Nyty*YD .

Then (Ky) :wyd = S (Cx):(xD
.



Call this ring A .

Note that
A is a subring of D= SQKDKEXSK .
Proceed similarlyto the previouslemma

. .
.

* Need to see that D is

right Noetherian : filter D

by Fi = S OK Diexsik .
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Then
,
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shows that
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⇒ J is fg.
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we also want to see leftNoetherian
.

Weill use opposite rings to seethis .

Def The opposite ring
ofa

noncommutative ring T
is The ring Top , which
id additivegroups is identicalto T,

and has multiplication "

P
"

ross = Sr
t't

-multiplication .

will use the convention that A
means

"

op
" multiplication andusual multiplication notation means usual

T -multiplication .



There is a natural bijection
between left T-modules and

right TOP - modules :
if M is a left Fuddle, then
it is a right TOP - module by
M est : = E. m

{ Heft taction
men te TOP#T) on MN .

Sets
1

since
MDCties) -- MosCst)

= Cst) . m = 5. Ct . m)
= (m .pt) ops V.

In particular,
left ideals
of T
La right ideals

of top



So T B left Noelle
⇐TOP Bright booth .

Note also
,
(ToBOP =I as rings.


