Now: want to show that polynomis rings ane D-algelva singled will have different proofs in char o and char $p>0$.
Recall lexpercisei for a poly. ring oven a field,

$$
\begin{aligned}
& {\left[\bar{x}^{\alpha} \partial(\beta), \bar{x}_{i}\right]=\bar{x}^{\alpha} \partial\left(\beta-e_{i}\right)} \\
& \rightarrow\left[\bar{x}^{\alpha} \partial(\beta), \partial^{(\sigma \cdot i)}\right]=-\alpha_{i} \bar{x}^{\alpha-e_{i}} \partial^{(\beta)} \\
& \text { where } e_{c}^{-}=\left(0, \ldots, 0, \frac{\lambda}{2}, 0, \ldots, 0\right)
\end{aligned}
$$

Thin: K field of char $0, R=A[F]$ poly ring. Then R 13 D-akgobra simple.
Pf: Let $J_{\neq 0} 0$ be a two-sided ideal of $P_{\text {RIA, and }} \delta \in J$ nonzero. For $\partial \in D_{R i k}$, vote that $[\delta, \gamma] \in J$. Write $\delta=\sum_{i} \lambda_{i} \bar{x}^{\alpha_{i}} \partial^{\left(\beta_{i}\right)}$ for some $f\left(\in \mathbb{K}^{x}\right.$.

Reorder so that $\left|\beta_{1}\right| \geq\left|\beta_{i}\right|$ for each. Apply $\left[-, \overline{x_{j}}\right] \quad \beta_{1, j}$ times for each j. we hen get $\bar{r}_{\in}, J \backslash\{0\}$. Then
apply $\left[-, \partial^{(e s)}\right]$ repeatedly to get some $\bar{\lambda} \in J \backslash\{0\}$, so $I \in J$, 园.

Matrix rings: If R is a commutative ring, and F is a free moolle of rank n, Then a choice of basis for F (ie. an iso $F \simeq R^{8 n}$) induces on isomorphism End $(F) \simeq \operatorname{Mataxn}_{\text {ann }}(R)$

$$
\left(=\operatorname{Hom}_{R}(F, F)\right)
$$

"Left multiplication" in Natnxa (R)
row operations
"right multiplication" in Nomen column operations.

Given a matrix whin a nonzero entry s in any position, con generate (as a two-siced ideal)
all matrices with entries in (r). Likewise if the entries of M generate $I \subseteq R$, then M generates las a fro-sided ideal
\rightarrow Matuxn (I) \leq Matuxn (R). All two-sided ideals arise this way.
Tu particular: 1) Matnxn(R) is generally not simple (countess $R, 3$ a fie (d).
 generates the whole wirtix ring as a two-sided ideal if it has unit entry,
An element $\varphi \in \operatorname{Eud}_{R}(F)$ (F free module) generates the wide endo. sing if it has a vuit entry wrespert to one free basis for F.
Thin: let k a perfect fie (d of char $p>0$, and $R=k[\pm]$ poly ring. Sem R is Ir algebra simple.

Af: Let $J \neq 0$ ba two -sided ideal, $\delta \in J i\{0\}$. We have $\delta \in H_{\text {tripe }}(R, R)$ for some e (and all lazar e).
R free $R^{p-a}-\bmod$ of Site rank

$$
\Longrightarrow \operatorname{Hom}_{R^{p a}}(R, R) \simeq \operatorname{Mat}_{2 x!}\left(R^{p^{a}}\right) .
$$

Thus, if δ considered as a matrix in Hon $\mathbb{R}^{a}(R, R)$ (for some a, and some chore of free basis) has a unit entry, then $I \in D^{(a)} \delta \cdot D^{(a)}$ $\leq D_{\text {BK }} \cdot \delta \cdot D_{\text {BK }} \leqslant J$.
First, consider $\delta \in \operatorname{lompom}_{\text {pe }}(R, R)$ as a matrix with entries in $R^{p e}$, and let $r^{\text {pe }}$ be an entry. Note that r is part of a froe basis for R as a free $R^{C^{C}}$-module for some C.

Thus $\sqrt{r_{\in}+H_{\text {lome }}(R, R) \text { has } 1 \text { as }}$ entry in its matrix for stu e basis. We san this on Monday: given a poly $r \in R$, can ahooge e large. enough so that r becomes park of a tree basis
Likewise, $\overrightarrow{\vec{p}^{p}} \in H_{\text {ow }}^{k^{p+c}}\left(R^{\beta}, R^{p}\right)$ has 1 as an entry in some basis $\left\{f_{\alpha}\right\}$ for $R^{p e}$ over $R^{p^{p+c}}$.
Now if $\left\{g_{\beta}\right\}$ is

$$
R \geq R^{p e} \geq R^{p e+c}
$$ a free lass is for R over $R^{p^{e}}$, \{g β^{2} 却 $\}$ then $\left\{f_{\text {ag }}\right\}$ is a free basis for R over $R p^{p+e c}$. Then in this basis, the matrix for δ has 1 as an entry.

Cir: Let R be a polynomial ring over a perfect freed K. Ohm eVery local ci homology model

$$
H \frac{1}{I}(R) \text { is either or faithful (a) an R.noduld. }
$$

RomketExerase: The perfect field bypothesis can be removed, e.g., by a faithfully flat base charge oragnant.
Now, want to show that
Dalgebra simple \Rightarrow Cohen Macauky.
Def: A local (ring (R, m) is coheerMacavlay (CM) if $\operatorname{dep} \mid \lim _{\operatorname{m}}(R)=\operatorname{dim}(R)$.
A ring R is $C M$ if R_{β} is $C M$ for all $p \in \operatorname{Spec}(R)$.

Facts: 1) The ring ofefiuition does not contradict he local definition:

$$
\begin{aligned}
& \operatorname{depth}_{2}(R)=\operatorname{div}(R) \Rightarrow \operatorname{depth}{ }_{R}\left(F_{f}\right)=\operatorname{dim}\left(R_{\neq}\right) \\
& (R, o n) \text { local for all } p \in \operatorname{spec}(f) \\
& 21\left(R, m_{n}\right) B C M \Longleftrightarrow H_{m}^{<\operatorname{din}(R)}(R)=0 \\
& \Leftrightarrow H_{R R_{R}}^{\angle h(f)}\left(R_{R}\right)=0
\end{aligned}
$$

3) If (R, mon) is local, ess. of finite type over a field k and R_{F} is CM for all $p \neq 0 n$, hin $H_{m}^{i}(R)$ has finite leigh as on R-mosule for $i<\operatorname{din}(K)$.
Thin (Van dun Burgh): Let R be es \&fintye war a fie $d K$ and suppose hats R is D-algebra simple. Then $R B C M$.
pf: If not, pick $\not R \in \operatorname{spee}(P)$ with R_{p} not $C M$, bot R_{q} CM For all $q_{\neq p} p$. We can do this since R is Nbellevian, or $\operatorname{spec}(R)$ satisfies the descending chain condition. Thus, if $\left\{p / R_{p}\right.$ not $\left.C M\right\}$ is noreungtly, if has a minimal elerener] Then $\exists \bar{\Sigma}<G(p)$ with $H_{R R_{k}}^{\tau_{R}}\left(R_{p}\right) \neq 0$ and has finite leigh as on R_{p}-mode. thus, $\left.p^{n} \cdot H_{k}^{2} R_{p}\right)=0$.
Note that $H_{R_{R} p_{p}}^{i}\left(R_{p}\right)=H_{p_{2}}^{i}\left(R_{R}\right)$ (since hey are computed by the
exact sane coach complex) exact sane Each ouglex).
Then $H_{p}^{i}\left(R_{p}\right)$ is a nonzero $D_{R I K}$-nodule that 3 root R-module faiffifulo Thus R is roo D-algebra simple.

Recall:
D-algebra simple $\stackrel{\nLeftarrow}{\Rightarrow}$ Dimple simple

Conjecture (Levasseur Stafford:
Classical invariant rings (in character sic zero) ave Ralgebra simple.

Many cases are known (LS, Schwore), bot this is an open question still.
We will do finite group invariants biter. The crosateristic P analogue of $L S$ conj was settled by smith-Vouden Berth.

