$$
\begin{aligned}
& S=\mathbb{R}\left[\frac{x}{x_{n}}\right]_{n} \\
& \operatorname{Hom}_{D_{G \mid R}}\left(H_{(x)}^{n}(s), M\right)=0 \text {. } \\
& M=\left\{\begin{array}{l|l}
\mathbb{R}[\underline{x}] & \text { because the only } \\
\mathbb{R}[x] & \text { acton tin Ml }
\end{array}\right. \\
& \text { function (in MI } \\
& \text { with } x_{i} f=0 \text { all } x_{i} \\
& \text { is zero function. }
\end{aligned}
$$

Equally well can look for solutions to differential equations in any D-module:

$$
\begin{aligned}
& N_{A}=\operatorname{ooker}\left(D_{B \mid \mathbb{R}}^{n} \xrightarrow{A} D_{K(\mathbb{R}}^{m}\right) \stackrel{\text { finpros }}{\text { i-molle }}
\end{aligned}
$$

$\operatorname{Sol}_{N_{A}}(M):=\operatorname{Hom}_{\operatorname{SO}_{\operatorname{SI}}}\left(N_{A}, M\right)$
Sol $_{N_{A}}(-): D$-mod $\rightarrow \mathbb{R}$-vector space can look for solutions to in any
D-ideals \&-D-simplcisity
Recall: A-ideal is a D-summable of R. Def: A comm. ring R is D-module simple (over $A \rightarrow R$) if it in simple as a D-mode. Ie., the only $D_{\text {ideals of } R}$ are (0) and R.
Remark: Many sources say "D-simphe" for what we call "D-modle simple."
Lem: R is D-mod simple $\Leftrightarrow \forall r \in R \backslash\{0\}$

$$
\exists \delta \in D_{R \mid A}: \delta(r)=1
$$

pf: (\Leftrightarrow) If $I \neq(0)$ is a D-ideal, $r \in I \backslash\{\sigma$, then $\exists \delta: \delta(r)=1$. Then $I \in I$, so $I=R$.

$$
\Leftrightarrow)_{R(A}^{\text {For }} \underset{D_{R} R}{ }(r) \subseteq R \text { is a D-ideal. If } r \neq 0 \text {, }
$$ then $D_{\text {RA }}(r)=R$, so $\exists \delta$ st. $\delta(r)=1$.

Prop: If R is Noith, reduced, and D-mod. simple, (for any A), them R is a domain.
听: It this case, (0) is radical, so it is he intersection of all the so minimal primes of R. Each of these is Hum a Dideal, so there can only be just (0) ; ie., (0) 17 prime.

Recall: In the Nosh, case, minimal primary of D-ideals are D-iteds:

$$
\left(I i_{D_{R A}} I\right) \leq\left(Q i_{J_{R 4 t}} Q\right)
$$

if a is a min primary cot. of I.

Ex: Let R be a poly ring over a field k of chart O. Then RB D-mod simple. In fact, we proved something much stronger:

$$
D_{\text {RiNk }}^{i} \xrightarrow[\text { res. }]{\text { rem }_{n}} H_{\text {om }}\left([R]_{i}, R\right)
$$

is bijective. Thus, given $r \neq 0$, we have $r \in[R] \leq i$ for some i, and there is some $\delta \in D_{\text {ilk }}$ with $\delta^{\prime}(r)=1$.
In fact, the same argument works for any field of any draratevistic.
(Exercise: double -check that that ergumout works char. Free
Ex: A Stanley-Reisner ring (other tran a poly ring) is (od Doolie simple. Egg, for $R=\frac{k[x, y]}{(x y)},(0),(x),(y),(x, y)$

Ex: The cubic $R=\mathbb{C}[x, y, z] /\left(x^{3}+y^{3}+z^{3}\right)$ is not D-mad simple. Indeed, there are no diffle ops of negative degree, each deal $[R]_{\geq i}$ in a D-deal.

Lem: Let $A \rightarrow R \rightarrow S$ convarings
M, N S-modutes. Then

$$
D_{S \mathbb{R}}^{i}(M, N) \subseteq D_{S I A}^{i}(M, N) \subseteq D_{R \mathbb{~}}^{i}(M, N)
$$

tiff Exercise
Lem: Let $A \rightarrow R \xrightarrow{i} S$ comm. rings, and $\beta: S \rightarrow R \quad R$-linear. Then there is a map $M=N=S$

(warning: not a ringhomomuphisu).

Pf We have $D_{S i A}^{i} \subseteq D_{R 1 A}^{i}(S, S)$,

$$
\beta \in D_{R A}^{0}(S, R), \quad i \in D_{R / A}^{0}(R, S)
$$

\& follows from general composition rote.
Thim(Smifh): Let $A \rightarrow R \rightarrow S$ comm. rings,
S D-mochle simple (over A), and R a diet summand of S. Then F 1 R module simple,
P色: $R \rightarrow S$, $S \neq R$ splitting of $\beta(1)=\beta(i(1))=1$. Then $\forall r \in R \backslash\{0\}$, $i(r) \neq 0$ and $\exists \delta \in D_{S \mid A}$ with $\delta(i(v)=1$.
So $_{1} \rho(\delta)(r)=\beta(\delta(i(r))=\beta(1)=1$. Gor: A dies summand of a poly. sing over a field is D-mod simple.

In particular, rings of invariants of linearly reductive groups,
eng. finite groups
with l al E^{x},
$\left(k^{*}\right)^{t}$ and others,
are I -module simple.
$A l_{R O}=\mathbb{C}\left[S_{i j}(i<j\}\right]$ is D-mod simple.
Now, want to relate Dimod simplicity to classes of singulutios in posting cheraduritr?

Recall: $\quad R \xrightarrow{F} R$

$$
F(r)=r^{P}
$$

is a ring homos.

$$
\text { if cher }>0 \text {. }
$$

Likewise $\stackrel{\downarrow}{R} \xrightarrow[\substack{\text { fen }}]{\text { pe }}$

$$
F(r)=r^{e} \quad \text { its iterates. }
$$

we will wite ${ }^{e} R$ for R with the R-module structure via vest of scalars through Fe . That is,

$$
\begin{aligned}
& S \cdot r=S^{p^{e} r} \\
& R \cap{ }_{\hat{N}}=e_{R}^{\hat{n}}
\end{aligned}
$$

Thus, $R \xrightarrow{F e} R$ is R-linear.
R is reduced $\Leftrightarrow F$ is injecrive
$\Longleftrightarrow \mathrm{Fe}$ is injective for some \Leftrightarrow all e.
In this case (R reduced),

$$
\begin{gathered}
\operatorname{Frac}(R):=\omega^{-1} R, W \text { set of nouzerotivisors } \\
\text { or } R
\end{gathered}
$$

is a product of fields, and

$$
\begin{aligned}
& R \longrightarrow \operatorname{Frac}(R) \simeq \prod_{p \notin M_{\operatorname{ma}}(R)} \operatorname{Frac}(R / P) \\
& 1 \quad \text { alg.closure } \\
& \overline{F_{\text {rec }}(R)}:=\prod_{p \in M_{\text {in }}(R)} \overline{\operatorname{Frac}(R / P)}
\end{aligned}
$$

Then, we have $R^{\frac{1}{p}} p^{e}:=\left\{r \in \overline{F \operatorname{Fac}(R)} / r^{p e} \in R\right\}$. is a solbring of $\overline{\operatorname{Frac}(R)}$, and the R-module structure on $R^{\frac{7 / P}{r}}$ via restriction of scalars $R \leq R^{1 / P e}$ agrees with

Ally in this case $R \simeq R^{R} \subseteq R$ and we

