Last time:
M D-module, $W \subseteq R$ mult.closed
$\Rightarrow W^{-1} M$ is a D-mookle in a unique way.
In parifcular $w^{-2} R$ is a la nays a D-modilíle.
Prop: Let M be a D modhle, and $\delta \in D_{<1}^{i} A$.
Hen the map $M \xrightarrow{\delta \cdot} M$ is an element of $D_{R H} \rightarrow(M, M)$ Som
pct By f

$$
i=0 \Rightarrow \delta=\bar{r} \text {, which acts as } M \xrightarrow{r} M
$$

by definition, which is in $\operatorname{Hom}_{R}(M, M)$
ind. step: $\delta \in D_{R 1 A}^{i}$. Want to see that ${ }^{\prime} D_{R 1 A}^{O}(M, M)$.

$$
\left[\left(m \rightarrow \delta_{0} m\right), \overline{\vec{r}}\right] \in D_{R 1}^{i-1}(M, M) \text { for }
$$

\{ each $r \in R$?
This sends $m \mapsto \delta \cdot(r m)-r(S \cdot m)$

$$
=\left[\delta_{1}, \vec{r}\right] \cdot m
$$

which is in $\operatorname{Di-7}(\mu, \mu)$ by $\frac{1}{I} H$.

Note: if T is a noncorom ring and M is a left Cor right) T-modole, then ann (M) is a two-sided ideal:

$$
\begin{aligned}
& \alpha \cdot M=0, \beta \in T \Rightarrow \\
& (\alpha \beta) \cdot M=\alpha \cdot(\beta \cdot M) \leq \alpha \cdot M=0 \\
& (\beta \alpha) \cdot M=\beta \cdot(\alpha \cdot M)=\beta \cdot 0=0 .
\end{aligned}
$$

Thus,
Prop: The annihilator of a D-modile is a two-sided ideal of Pros.
Local cohomology
Given $f=f_{1}, \ldots, f_{n}$ sequence of elements and an R-module (R comm.) M, define $\check{e} \cdot(f ; M)$ as the as the complex of R-modules

$$
O \rightarrow M \rightarrow M_{i} M_{f_{i}} \rightarrow \underset{i<j}{\oplus} \mu_{f_{i} f_{j}} \rightarrow \cdots \rightarrow \mu_{q_{2}} \vec{f}_{n} 0
$$

with \pm signs chosen in such a way as to obtain a complex, egg.,

$$
0 \rightarrow M \stackrel{[1}{[1]} M_{f_{1}} \otimes M_{f_{2}} \xrightarrow{[1-1]} M_{f_{f} f_{2}} \rightarrow 0
$$

Theorem: If $\sqrt{(f)}=\sqrt{(g)}$, then $\Rightarrow(f)=(g)$

Thus, we define
$H_{I}^{i}(M):=H^{i}\left(\sum_{0}(\underline{f} ; \mu)\right)$ for $I=(f)$. i th local cohomology of M with supposing I.
If $\mu 3$ a D-modute, then each $M_{f_{i}} \ldots f_{i t}$ is \& Module, and each map $M_{\sigma_{1}} \ldots f_{i t} \xrightarrow{ \pm 1} M_{f_{1} \ldots f_{i}} f_{i+1}$ is D-linear, so \check{e} e $\left(£_{1}, M\right)$ is a complex of K modules and each $H_{I}^{\prime}(M)$ is a D-module w_{i} "compote" one of these soon.

Note that any left ideal of DRIA is a D-modute, an g any cyclic D-module is of the form $D_{R 1} / \mathrm{J}$ For some left ided J.
Left ideal gen by $\delta_{1}, \ldots, \delta_{n}$ is $\sum_{i} D_{R \mid A} \cdot \delta_{i}=\left\{\alpha_{1} \delta_{1}+\cdots+\alpha_{n} \delta_{n} \mid \alpha_{i} \in D_{R \mid A\}}\right\}$.
$D_{R M A}=\left\{\delta_{i}\right\}$
In general, we have

$$
\begin{aligned}
& D \rightarrow J \longrightarrow D_{\text {RIA }} \underset{\text { evaluate }}{\text { eva }} R \rightarrow 0 \\
& J=\{\delta \mid \delta(1)=0\} \text {, as } D \text { modules }
\end{aligned}
$$

As R-modules, this splits

$$
D_{\text {RIA }}^{\sim} \underset{\sim}{\sim}
$$

sometimes this J is called the higher derivations or the differential aperaitars.

For each i, have $D_{R 14}^{i} \subseteq D_{R 14}^{i}$, and this splits as R-modutes:

$$
0 \rightarrow \bar{D}_{R 1 A}^{i} \rightleftarrows D_{R \mid A}^{i} \rightleftarrows D_{A A}^{i} \longrightarrow 0
$$

For $\bar{i}=1, \overline{D_{R / 4}}$ is the 4 -lierearivations on R, maps that seerisfy Leibniz rule

$$
\partial(x y)=x \partial(y)+y \partial(x)
$$

(Exec arse).
Let R be a poly ring oven A, We have $D_{R(4}=\oplus_{\alpha}^{\oplus} \frac{O}{R} \partial^{(\alpha)}$
Then $\operatorname{ker}\left(D_{R I A} \xrightarrow[\substack{\text { earantret } \\ \text { dTP }}]{ } R\right)$ is

$$
J_{1}=D_{\text {RIA }} \cdot\left\{\partial^{(\alpha)} \mid \alpha \neq 0\right\} ; s o
$$

$R \simeq D_{R H} / J_{7}$.
In porticalaici if $k, 3$ a field of chan 0 , then $J_{1}=D_{R 1 k} \cdot\left\{\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}$, and

$$
R \simeq D_{R K K} / D_{R I K} \cdot\left\{\frac{\partial}{\partial x_{I}}, \ldots, \frac{\partial}{2 x l}\right\}
$$

Let $J_{2}=D_{A A} \cdot\left\{x_{1}, \ldots, \bar{x}_{n}\right\}$ (R poly ring over A)
write

$$
H_{(x \mid 1}^{n}(R)=\frac{R_{x_{1} \ldots x_{n}}}{\sum_{i} R_{x_{1} \ldots \hat{x}_{i} \ldots x_{n}}}
$$

$$
\frac{2}{\alpha_{1}} \oplus A \cdot x_{1}^{\alpha_{1}^{\prime}} \cdots x_{n}^{\alpha_{n}}
$$

$\alpha_{1}, \ldots, \alpha_{n}<0$
Then $\overline{x_{i}} \cdot x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}=\left\{\begin{array}{cc}x_{1}^{\alpha} \ldots x_{i}^{\alpha+1} \ldots x_{n}^{\alpha_{n}} & \alpha_{i}<-1 \\ 0 & \alpha_{i}=-1\end{array}\right.$
and $2^{(\beta)} \cdot \underline{x}^{\alpha}=\underset{\text { always nonzero! }}{\binom{\alpha_{1}}{\beta_{1}} \cdots\binom{\alpha_{n}}{\beta_{n}}} \underline{x}^{\alpha-\beta}$
Then $\eta_{1}=x_{1}^{-1} \cdots x_{n}^{-1}$ is a generator for $H_{(\underline{x})}^{n}(R)$ as a D-module, and the annihilator of 2 is J_{2}.

$$
\text { so } H_{c x}^{n}(R) \simeq D_{R}\left(4 / J_{2}=\operatorname{P}_{R 1 A} / D_{R I A}-\left\{\bar{x}_{1} \ldots, \bar{x}_{2}\right\}\right. \text {. }
$$

D-modeles \perp differential equations
To any differentidel operator $\delta \in D_{\mathbb{R}[x] \mid R}$ there is a differcutol equation
(*) $\delta(f)=0$
$\left(\lambda-\frac{\partial}{\partial x}\right)(f)=0$.
i $f=C e^{\lambda x} \quad I-d i n$ vs. / R
Litewise one can consiter a linear rystem of PDEs:
(947) $\left[\begin{array}{ccc}\delta_{1_{1}} & \cdots & \delta_{1 m} \\ \vdots & & \delta_{n} \\ \delta_{n_{1}} & \cdots & \delta_{n n}\end{array}\right]\left(\begin{array}{c}f_{1} \\ \vdots \\ f_{m}\end{array}\right)=\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right)$

We can expregs solving or (W) as soneting abebraic.
merally, people bok for sokitions in

$$
\begin{cases}e^{\infty}\left(\mathbb{R}_{n}^{n}\right) & \\ \mathbb{R} \llbracket x_{2}, \ldots, x_{n} \| & \text { function analyste } \\ \mathbb{R}\left\{x_{1}, \ldots, x_{n}\right\} \ldots & \text { near } 0 \text {. }\end{cases}
$$

Remark: Eadr of these is a Dmodle.

Prop. For each of $M=\left\{\begin{array}{l}e^{\infty}\left(\mathbb{R}^{n}\right) \\ \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \\ \mathbb{R}\left\{x_{1}, \ldots, x_{n}\right\}\end{array}\right.$
there is a bijection

is determined by the image of I. Moreover, must have
$O=\sigma(\delta)=\sigma(\delta \bar{I})=\delta \cdot \sigma(\bar{I})$, so $\sigma(\bar{I})$
must be a solution of $\delta(\sigma(\overline{7}))=0$.
conversely, if $\delta(f)=0$, there is a map σ with $\sigma(\bar{\lambda})=f$.
Prop: For each M as above, there is a bijection

$\left\{\begin{array}{c}\left.\text { solutions }\left(f_{1}, \ldots, f_{b}\right) \text { of } A \cdot\left(\frac{f_{k}}{f_{b}}\right)=0\right\} \text {. } 0 \text { in } M\end{array}\right.$
Thus, every finitly piresented Dmodule can PDE hought of as a tineavo systam of PDES.
(Mrivi fiferestivition).

$$
\begin{aligned}
& 3 \\
& \text { Drrac S-function. }
\end{aligned}
$$

