

FILL IN THE BLANK RING REVIEW

Fill in the blanks. Be sure to choose the most general/strongest correct answer when more than one correct answer is possible.

- The kernel of a ring homomorphism is a(n) _____.
- The image of a ring homomorphism is a(n) _____.
- Use the candidates below to fill in the following:
 $\underline{\hspace{1cm}} \Rightarrow \underline{\hspace{1cm}} \Rightarrow \underline{\hspace{1cm}} \Rightarrow \underline{\hspace{1cm}} \Rightarrow \underline{\hspace{1cm}}$.
 - domain
 - Euclidean domain
 - field
 - PID
 - UFD
- In a ring, unit _____ zerodivisor.
- A commutative ring has (exact) division by nonzero elements if it is a _____.
- A commutative ring has cancellation by nonzero elements if it is a _____.
- A commutative ring has division with remainder by nonzero elements if it is a _____.
- In¹ a commutative ring, $(a) \subseteq (b) \iff \underline{\hspace{1cm}}$.
- In¹ a commutative ring, $(a) = (b) \iff \underline{\hspace{1cm}}$.
- In² a _____, $(a) = (b) \iff \underline{\hspace{1cm}}$.
- In a _____, GCDs exist.
- In a _____, the GCD of two elements is a linear combination of them.
- In a _____, GCDs are unique _____.
- In a _____, maximal ideal \Rightarrow prime ideal.
- In a _____, (nonzero) prime ideal \Rightarrow maximal ideal.
- In a commutative ring R , I is a maximal ideal $\iff R/I \underline{\hspace{1cm}}$.
- In a commutative ring R , I is a prime ideal $\iff R/I \underline{\hspace{1cm}}$.
- In a _____, prime element \Rightarrow irreducible element.
- In a _____, irreducible element \Rightarrow prime element.

¹Express in terms of divides.

²Express in terms of a word.