
PRINCIPAL IDEAL DOMAINS

FROM LAST TIME:
• A principal ideal domain (PID) is an integral domain in which every ideal is principal.
• Every Euclidean domain is a PID, but the converse is false.

DEFINITION: Let R be a commutative ring, and a, b ∈ R.
• If there is some c ∈ R such that a = bc, then we say b divides a, or b is a divisor of a,

or a is a multiple of b, and write b | a.
• We say a and b are associates if a = ub for some unit u. Note that this relation is

symmetric, since b = u−1a in this case.
• A greatest common divisor or gcd of a and b is an element d ∈ R such that

– d is a common divisor of a and b, meaning d | a and d | b, and
– any common divisor of a and b also divides d, meaning if c | a and c | b, then c | d.

• A least common multiple or lcm of a and b is a common multiple of a and b that
divides any common multiple of a and b.

(1)(1) Divisibility and principal ideals: Let R be a commutative ring, and a, b ∈ R.
(a)(a) Show that (a) ⊆ (b) if and only if b | a.

If (a) ⊆ (b), then a ∈ (b), so a = bx for some x, and hence b | a. Conversely, if
b | a, then a = bx for some x, so a ∈ (b), and by definition of generates, since (b)
is an ideal, we must have (a) ⊆ (b).

(b)(b) Show that (a) = (b) if and only if a | b and b | a.

This follows from the previous part since (a) = (b) if and only if (a) ⊆ (b) and
(b) ⊆ (a).

(c)(c) If R is an integral domain, show that a and b are associates if and only if (a) = (b).

If a, b are associates, write a = ub, so b | a, and b = u−1a, so a | b, and thus
(a) = (b) by the previous part. Conversely, if (a) = (b), then by the previous part
a = bx and b = ay for some x, y ∈ R, so a = xya. Since R is a domain, xy = 1,
so x is a unit, and from a = bx we conclude a, b are associates.

(2)(2) GCDs: Let R be an integral domain, and a, b ∈ R.
(a)(a) If R is an integral domain, and d and e are two GCDs of a and b, show that d and e are

associates.

Since e is a common divisor, and d is GCD, we have e | d. Switching roles, d | e as
well, so d and e are associates by the previous part.

(b)(b) If (a, b) = (d), show that d is a GCD of a and b.



First, a ∈ (a, b) = (d) implies d | a, and likewise for b, so d is a common divisor.
Now, if e is any common divisor of a and b, then a ∈ (e) and b ∈ (e) implies
(a, b) ⊆ (e) by definition of generates, so (d) ⊆ (e) and e | d, as required.

(c)(c) Use the previous to fill in the blanks:
If R is a then GCDs are unique .
If R is a then GCDs exist.

If R is a DOMAIN then GCDs are unique UP TO ASSOCIATES.
If R is a PID then GCDs exist.

(3) Euclidean algorithm: Let R be an integral domain.
(a) What is gcd(x, 0) for x 6= 0?
(b) If a = bq + r, show that gcd(a, b) = gcd(b, r).
(c) IfR is a Euclidean domain, use the previous two steps to give an algorithm to compute

a GCD of two elements.
(d) Use this to find a single generator for the ideal (x6 − 1, x5 − x4 − 1) in Q[x].
(e) Use this to find a single generator for the ideal (13, 12− 5i) in Z[i].

DEFINITION: Let R be a domain and r ∈ R.
(i) We say that r is irreducible if r 6= 0, r is not a unit, and r = ab implies either a or b is

a unit.
(ii) We say that r is prime if r 6= 0, r is not a unit, and r | ab implies r | a or r | b.

REMARK: An element r of a domain R is prime if and only if (r) is a prime ideal.

THEOREM: Let R be an integral domain and r ∈ R.
(i) If r is prime, then r is irreducible.

(ii) If R is a PID, and r is irreducible, then r is prime. Moreover, in this case (r) is a
maximal ideal.

(4)(4) Examples of irreducible elements:
(a)(a) Show1 that 5 is not irreducible in Z[i].

We have 5 = (2 + i)(2− i). We claim that neither 2 + i nor 2− i is a unit. To see
it, consider N : Z[i] r {0} → Z≥0. This is multiplicative, so if αβ = 1 in Z[i],
then N(α)N(β) = 1 in Z≥0 so N(α) = 1, but N(2± i) = 5.

(b)(b) Show2 that f = x2 + [1] is irreducible in Z/3[x].

1Hint: 5 = 22 + 12.
2Hint: If f = gh with g, h nonunits, argue that without loss of generality we can take g = x− [n] for some n, and

show that this is impossible.



If f = gh, then 2 = deg(f) = deg(g) + deg(h). A polynomial of degree 0 is a
nonzero constant, which is a unit in Z/3 since it is a field. Thus, if f is reducible,
we have deg(g) = 1, and dividing through by the leading coefficient and moving
that over to h, we can take g = x− [n]. But then [n] would be a root of f in Z/3.
Plugging in [n] = [0], [1], [2] we see that there are no roots, so this is impossible.
We conclude that f is irreducible.

(c)(c) Use the Theorem to deduce that
Z[i]
(5)

is not an integral domain, and
Z/3[x]

(x2 + [1])
is a

field.

Since prime elements are irreducible and 5 is reducible, it is not a prime element

in Z[i]. Thus (5) is not a prime ideal, so
Z[i]
(5)

is not an integral domain.

Now, Z/3[x] is a PID, and x2 + [1] is an irreducible element, so by the theorem,

(x2 + [1]) is a maximal ideal. Thus
Z/3[x]

(x2 + [1])
is a field.

(5) Proof of Theorem:
(a) Prove part (i) of the Theorem.

Suppose that r is prime and r = ab. Then r | ab implies, without loss of generality,
that r | a, so there is some x such that a = abx. Then bx = 1 so b is a unit. This
show that r is irreducible.

(b) Let R be a PID and r ∈ R irreducible. Explain why3 there exists some element s ∈ R
such that (s) is a maximal ideal and (r) ⊆ (s).

Following the hint, we have that (r) is contained in some maximal ideal I . Since
R is a PID, I = (s) for some s.

(c) Show that (r) = (s), and conclude the proof of part (ii).

Note that s must be nonzero since 0 6= r ∈ I , and not a unit since I 6= R. Then
s | r, so r = sx for some x. But r is irreducible and s is not a unit, so x is a unit.
Thus from the above, (r) = (s), and hence (r) is maximal.

(6) More irreducible elements:
(a) Let F be a field. Show that any polynomial f ∈ F [x] of degree at least two that has a

root is reducible.
(b) Give an example of a reducible polynomial over a field with no root.
(c) Show that 11 is irreducible4 in Z[i].

3Hint: We showed that every ring contains a maximal ideal. It follows from this fact and the Lattice Isomorphism
theorem that every proper ideal is contained in a maximal ideal.

4Hint: You can use the fact that the norm function N(a+ bi) = a2 + b2 is multiplicative.


