PRINCIPAL IDEAL DOMAINS

FROM LAST TIME:

e A principal ideal domain (PID) is an integral domain in which every ideal is principal.
e Every Euclidean domain is a PID, but the converse is false.

DEFINITION: Let R be a commutative ring, and a,b € R.

e If there is some ¢ € R such that a = bc, then we say b divides a, or b is a divisor of a,
or a is a multiple of b, and write b | a.
e We say a and b are associates if « = ub for some unit u. Note that this relation is
symmetric, since b = «~'a in this case.
e A greatest common divisor or ged of a and b is an element d € R such that
— d is a common divisor of a and b, meaning d | a and d | b, and
— any common divisor of a and b also divides d, meaning if ¢ | a and ¢ | b, then ¢| d.
e A least common multiple or lem of @ and b is a common multiple of a and b that
divides any common multiple of a and b.

(1) Divisibility and principal ideals: Let R be a commutative ring, and a,b € R.
(a) Show that (a) C (b) if and only if b | a.

If (a) C (b), then a € (b), so a = bx for some x, and hence b | a. Conversely, if
b| a, then a = bx for some x, so a € (b), and by definition of generates, since (b)
is an ideal, we must have (a) C (b).

(b) Show that (a) = (b) if and only if a | b and b| a.

This follows from the previous part since (a) = (b) if and only if (a) C (b) and

(b) € (a).

(c) If R is an integral domain, show that a and b are associates if and only if (a) = (D).

If a, b are associates, write a = ub, so b|a, and b = u~'a, so a | b, and thus

(a) = (b) by the previous part. Conversely, if (a) = (b), then by the previous part
a = bx and b = ay for some z,y € R, so a = xya. Since R is a domain, zy = 1,
so x is a unit, and from a = bx we conclude a, b are associates.

(2) GCDs: Let R be an integral domain, and a, b € R.
(a) If R is an integral domain, and d and e are two GCDs of a and b, show that d and e are
associates.

Since e is a common divisor, and d is GCD, we have e | d. Switching roles, d | e as
well, so d and e are associates by the previous part.

®) If (a,b) = (d), show that d is a GCD of a and b.



First, a € (a,b) = (d) implies d | a, and likewise for b, so d is a common divisor.
Now, if e is any common divisor of @ and b, then a € (e) and b € (e) implies
(a,b) C (e) by definition of generates, so (d) C (e) and e | d, as required.

(c) Use the previous to fill in the blanks:
IfRisa then GCDs are unique
IfRisa then GCDs exist.

If R is a DOMAIN then GCDs are unique UP TO ASSOCIATES.
If R is a PID then GCDs exist.

(3) Euclidean algorithm: Let R be an integral domain.
(a) What is ged(z, 0) for x # 0?
(b) If a = bq + r, show that gcd(a, b) = ged(b, 7).
(c) If R is a Euclidean domain, use the previous two steps to give an algorithm to compute
a GCD of two elements.
(d) Use this to find a single generator for the ideal (z° — 1,2° — 2* — 1) in Q[x].
(e) Use this to find a single generator for the ideal (13,12 — 5i) in Z[i].

DEFINITION: Let R be a domain and r € R.

(i) We say that r is irreducible if » # 0, r is not a unit, and » = ab implies either a or b is
a unit.
(ii) We say that r is prime if r # 0, r is not a unit, and r | ab implies r | @ or r | b.

REMARK: An element r of a domain R is prime if and only if (7) is a prime ideal.

THEOREM: Let R be an integral domain and r € R.

(i) If r is prime, then r is irreducible.
(ii) If R is a PID, and r is irreducible, then r is prime. Moreover, in this case (r) is a
maximal ideal.

(4) Examples of irreducible elements:
(@) Show' that 5 is not irreducible in Z[i].

We have 5 = (2 +14)(2 — 7). We claim that neither 2 + ¢ nor 2 — i is a unit. To see
it, consider NV : Z[i] \ {0} — Z>,. This is multiplicative, so if a5 = 1 in Z[i],
then N(a)N(f) = 1in Z>p so N(a) = 1, but N(2 +4i) = 5.

(b) Show? that f = 22 + [1] is irreducible in Z/3[z].

Hint: 5 = 22 +12.
Hint: If f = gh with g, h nonunits, argue that without loss of generality we can take g = x — [n] for some n, and
show that this is impossible.



If f = gh, then 2 = deg(f) = deg(g) + deg(h). A polynomial of degree 0 is a
nonzero constant, which is a unit in Z /3 since it is a field. Thus, if f is reducible,
we have deg(g) = 1, and dividing through by the leading coefficient and moving
that over to h, we can take g = = — [n]. But then [n] would be a root of f in Z/3.
Plugging in [n] = [0], [1], [2] we see that there are no roots, so this is impossible.
We conclude that f is irreducible.
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(c) Use the Theorem to deduce that — is not an integral domain, and ————— is a

(5)
field.

Since prime elements are irreducible and 5 is reducible, it is not a prime element

7l
in Z[i]. Thus (5) is not a prime ideal, so Zli] is not an integral domain.

(5)

Now, Z/3[z] is a PID, and x? + [1] is an irreducible element, so by the theorem,
Z/3
(22 + [1]) is a maximal ideal. Thus _Z/3l] is a field.

(22 + [1])

(5) Proof of Theorem:
(a) Prove part (i) of the Theorem.

Suppose that 7 is prime and 7 = ab. Then r | ab implies, without loss of generality,
that 7 | a, so there is some z such that a = abz. Then bx = 1 so b is a unit. This
show that r is irreducible.

(b) Let Rbe aPID and r € R irreducible. Explain why" there exists some element s € R
such that () is a maximal ideal and (r) C (s).

Following the hint, we have that (r) is contained in some maximal ideal /. Since
Ris aPID, I = (s) for some s.

(c) Show that (r) = (s), and conclude the proof of part (ii).

Note that s must be nonzero since 0 # r € [, and not a unit since / # R. Then
s|r,sor = sx for some x. But r is irreducible and s is not a unit, so x is a unit.
Thus from the above, (r) = (s), and hence () is maximal.

(6) More irreducible elements:
(a) Let F' be a field. Show that any polynomial f € F[z] of degree at least two that has a
root is reducible.
(b) Give an example of a reducible polynomial over a field with no root.
(c) Show that 11 is irreducible* in Z[i].

3Hint: We showed that every ring contains a maximal ideal. It follows from this fact and the Lattice Isomorphism
theorem that every proper ideal is contained in a maximal ideal.
“Hint: You can use the fact that the norm function N (a + bi) = a® + b? is multiplicative.



