
MAXIMAL IDEALS AND PRIME IDEALS

DEFINITION: Let R be a ring.
(i) An ideal I of R is a maximal ideal if I is proper and for any proper ideal J , I ⊆ J implies I = J .

That is, I is maximal under containment among all proper ideals of R.
(ii) Let R be commutative. An ideal I of R is a prime ideal if I is proper and ab ∈ I implies a ∈ I or

b ∈ I .

THEOREM 1: Let R be a commutative ring and I an ideal.
(i) The ideal I is maximal if and only if R/I is a field.

(ii) The ideal I is prime if and only if R/I is an integral domain.

(1)(1) Prime ideals vs maximal ideals:
(a)(a) Use Theorem 1 to quickly explain why every maximal ideal in a commutative ring is prime.

We have I is maximal implies R/I is a field, which implies R/I is a domain, which implies I is
prime.

(b)(b) Show that the ideal (2) in Z[x] is prime but not maximal.

Z[x]/(2) ∼= Z/2[x], which is a domain but not a field.

(c)(c) Identify a maximal ideal in Z[x].

The ideal (2, x) is maximal, since Z[x]/(2, x) ∼= Z/2.

(2)(2) Prove1 Theorem 1.

(i) By the Lattice Isomorphism Theorem, the ideals of R/Q are of the form I/Q, where I is an ideal
in R containing Q.

By an exercise, R/Q is a field if and only if R/Q has only two ideals, {0} = Q/Q and R/Q. Thus
R/Q is a field if and only if the only ideals that contain Q are Q and R.

(ii) Now suppose Q is prime. If

(r + I)(r′ + I) = 0 + I,

then rr′ ∈ I and hence either r ∈ I or r′ ∈ I , so that either

r + I = 0 or r′ + I = 0.

Since R is commutative, then R/I is also commutative, and since Q is a proper, then R/I is not the
zero ring. This proves that R/Q is a domain.

Conversely, suppose that R/Q is a domain. Since R/Q is not the zero ring, Q is proper. If x, y ∈ R
satisfy xy ∈ I , then

(x+ I)(y + I) = 0

in R/Q, and hence either x+Q = 0 or y +Q = 0. It follows x ∈ Q or y ∈ Q. This proves that Q is
prime.

1Hint: For part (i), you might want use a HW problem characterizing fields in terms of ideals.



THEOREM 2: Let R be a ring. Then R has a maximal ideal.

DEFINITION: Let (P,≤) be a partially ordered set.
(i) A maximal element of P is an element x ∈ P such that for all y ∈ P , one has x ≤ y implies x = y.

(ii) A upper bound for a subset X is an element x ∈ P such that for all y ∈ X , one has y ≤ x.
(iii) A subset X of P is a chain if for all x, y ∈ X either x ≤ y or y ≤ x.

ZORN’S LEMMA: Let (P,≤) be a nonempty partially ordered set. If every chain C ⊆ P has an upper bound
c ∈ P , then P has a maximal element.

(3)(3) Zorn’s Lemma warmup.
(a)(a) The most common use of Zorn’s Lemma occurs in the following situation: P(Y ) is the collection of

all subsets of some set Y ordered by inclusion (A ≤ B if and only if A ⊆ B), and P is some special
family of subsets of P(Y ). Rewrite2 the statement of Zorn’s Lemma in this context.

If, P is nonempty and for any nested family of subsets {Aα}α with Aα ∈ P for all α, there is
some B ∈ P such that Aα ⊆ B for all α, then there is some element X ∈ P that is not properly
contained in any element of P .

(b)(b) In the context above, explain how to use Zorn’s lemma to try to show the existence of a minimal
element of P .

We can consider P as a poset with the alternative partial order A ≤ B if and only if A ⊇ B. A
maximal element of this poset corresponds to a minimal element of P under containment.

(4)(4) Prove Theorem 2.

Fix a ring R. Let S be the set of all proper ideals J in R, which is partially ordered with the inclusion
order ⊆. We claim that Zorn’s Lemma applies to S. First, S is nonempty, since it contains I . Now
consider a chain of proper ideals in R, say {Ji}i, all of which contain I . Notice that J :=

⋃
i Ji is an

ideal as well (exercise!), and moreover J 6= R since 1 /∈ Ji for all i.3 Since each Ji ⊇ I , we conclude
that J ⊇ I . Thus we have checked that J ∈ S. Now this ideal J ∈ S is an upper bound for our chain
{Ji}i, and thus Zorn’s Lemma applies to S. We conclude that S has a maximal element. Such an
element is, by definition, a maximal ideal of R.

(5) Prove or disprove: Any group G has a maximal proper subgroup (meaning a proper subgroup that is
maximal among all proper subgroups).

(6) Prove that every prime ideal contains a minimal prime ideal.

2Meaning replace all ≤ with ⊆ and unpackage the definitions of maximal element and upper bound.


