
THE MAIN THEOREM OF SYLOW THEORY

RECALL: Let G be a finite group and p be a prime number. Write |G| = pem with e ≥ 0 and p - m.
• A p-subgroup of G is a subgroup of order pk for some k ≥ 0.
• A Sylow p-subgroup of G is a subgroup of order pe.
• We write Sylp(G) for the set of Sylow p-subgroups of G. We often write np for #Sylp(G).

MAIN THEOREM OF SYLOW THEORY: LetG be a finite group and p be a prime number. Write |G| = pem
with e ≥ 0 and p - m.

(1) There exists a Sylow p-subgroup of G.
(2) Every Sylow subgroup is conjugate. Moreover, for any p-subgroup Q and any Sylow p-subgroup

P , there is some g ∈ G such that Q ≤ gPg−1.
(3) The number of Sylow p-subgroups of G is congruent to 1 modulo p.
(4) The number of Sylow p-subgroups of G divides m.

LEMMA: Let G be a finite group and p be a prime number. Let P be a Sylow p-subgroup of G and Q be
any p-subgroup of G. Then Q ∩NG(P ) = Q ∩ P .

(1)(1) Let p < q be distinct primes and G be a group of order pq. Use the Sylow Theorem to show that G is
not simple.

By parts (3) and (4) of the Sylow Theorem, the number of q-Sylow subgroups divides p and is
congruent to 1 modulo q, meaning of the form 1+ qk. The only divisors of p are 1 and p, but p < q
implies p is not congruent to 1 modulo q. This means there is only one q-Sylow. This must then be
a normal subgroup of order q, a proper normal subgroup.

(2)(2) Consider G = S4.
(a)(a) Show1 that G has a subgroup isomorphic to D4, the symmetry group of the square.

We know from before that D4 acts on the four vertices V of the square, and this action is
faithful. The corresponding permutation representation is an injective homomorphism ρ :
D4 → Perm(V ); after labelling the vertices, we can identify Perm(V ) ∼= S4. The image of
D4 in S4 is the isomorphic copy of D4.

(b)(b) Show that S4 has exactly three subgroups isomorphic to D4, that these three are conjugate, and
that any subgroup of S4 of order 8 is isomorphic to D4.

Consider the 2-Sylows of S4. By the Sylow Theorem, the number of these is congruent to
1 modulo 2 and divides 3, so there are either 1 or 3. We claim that no subgroup of order 8
is normal. Indeed, a normal subgroup is a disjoint union of conjugacy classes including {e},
and the nonidentity conjugacy classes of S4 have size 3, 6, 6, 8; one cannot express 8 as 1 plus
a sum of these. This shows the claim. Therefore, there cannot be a unique 2-Sylow (which
would necessarily be normal), so there are three. Since any subgroup of order 8 is a 2-Sylow,
and these are all conjugate, they are all isomorphic.

(c)(c) Describe the subgroups of order 3 of S4.

1Hint: D4 acts on the vertices of a square.



Without using the Sylow Theorem we already know that any group of order three is isomor-
phic to C3, and that there are eight elements of order 3 in S4. Each subgroup of order 3 has two
elements of order 3 plus the identity. Thus there are four subgroups of order three, each iso-
morphic to C3. Note that the Sylow theorem gives the two possibilities 1 or 4 for the number
of 3-Sylows.

(3)(3) Proof of part (1) of Sylow’s Theorem: Fix p. We will argue by induction on n that every group of n
has a Sylow p-subgroup.
(a)(a) Write n = pem. Address the case e = 0. Henceforth assume e > 0, so p |n.

If p - n, the identity is a p-Sylow.

(b)(b) Case 1: Assume that p divides |Z(G)|. Explain why there is some N E G with |N | = p.

There is an element g of order p in the center by Cauchy. Any subgroup of the center is normal,
so N = 〈g〉 works.

(c)(c) Apply the induction hypothesis to G/N . How can you use this to find a Sylow p-subgroup in G?

The order of G/N is pe−1m < n. By induction, there is a p-Sylow subgroup of G/N . This
has order pe−1 and the index is m. By the Lattice Isomorphism theorem, there is a subgroup
of index m in G, which has order pe, so a p-Sylow.

(d)(d) Case 2: Assume that p does not divide |Z(G)|. Show that there is some g ∈ G such that
[G : CG(g)] is not a multiple of p and not one. What does this say about |CG(g)|? What do
you get from the induction hypothesis?

Consider the class equation. Since the order of G is a multiple of p, and the order of the center
is not, there is a nontrivial conjugacy class of size not a multiple of p. Thus there is some
g ∈ G with [G : CG(g)] not a multiple of p. This means that the order of CG(g) is peu with
u|m and u 6= m. By the induction hypothesis, CG(g) has a p-Sylow, which is a subgroup
H ≤ CG(g) with |H| = pe. This H is a p-Sylow subgroup of G.

(4) Proof of parts (2) and (3) of Sylow’s Theorem: Fix a Sylow p-subgroup P . Let SP be the set of
conjugates of P , namely {gPg−1 | g ∈ G} ⊆ Sylp(G). We need to show that (2) Sylp(G) = SP and
that (3) #Sylp(G) ≡ 1 mod p.
(a) Let Q be any p-subgroup of G, and let Q act on SP by conjugation. Use the Lemma to show that

for any Pi ∈ SP , StabQ(Pi) = Q ∩ Pi.
(b) Show that |SP | =

∑s
i=1[Q : Q ∩ Pi] where Pi ranges through a set of representatives of distinct

orbits for the action of Q on SP .
(c) Take Q = P and WLOG P1 = P . Deduce that |SP | ≡ 1 mod p.
(d) To show (2) by contradiction, suppose that Q is not contained in any conjugate of P . Observe that

Q ∩ Pi $ Q for all i. Revisit the equation in part (b) and the conclusion of part (c) to obtain a
contradiction.

(e) Deduce part (3) from part (c) and part (2).


