THE MAIN THEOREM OF SYLOW THEORY

RECALL: Let G be a finite group and p be a prime number. Write $|G| = p^e m$ with $e \ge 0$ and $p \nmid m$.

- A p-subgroup of G is a subgroup of order p^k for some $k \ge 0$.
- A Sylow p-subgroup of G is a subgroup of order p^e .
- We write $Syl_p(G)$ for the set of Sylow p-subgroups of G. We often write n_p for $\#Syl_p(G)$.

MAIN THEOREM OF SYLOW THEORY: Let G be a finite group and p be a prime number. Write $|G| = p^e m$ with $e \ge 0$ and $p \nmid m$.

- (1) There exists a Sylow p-subgroup of G.
- (2) Every Sylow subgroup is conjugate. Moreover, for any p-subgroup Q and any Sylow p-subgroup P, there is some $g \in G$ such that $Q \leq gPg^{-1}$.
- (3) The number of Sylow p-subgroups of G is congruent to 1 modulo p.
- (4) The number of Sylow p-subgroups of G divides m.

LEMMA: Let G be a finite group and p be a prime number. Let P be a Sylow p-subgroup of G and Q be any p-subgroup of G. Then $Q \cap N_G(P) = Q \cap P$.

(1) Let p < q be distinct primes and G be a group of order pq. Use the Sylow Theorem to show that G is not simple.

By parts (3) and (4) of the Sylow Theorem, the number of q-Sylow subgroups divides p and is congruent to 1 modulo q, meaning of the form 1+qk. The only divisors of p are 1 and p, but p < q implies p is not congruent to 1 modulo q. This means there is only one q-Sylow. This must then be a normal subgroup of order q, a proper normal subgroup.

- **(2)** Consider $G = S_4$.
 - (a) Show that G has a subgroup isomorphic to D_4 , the symmetry group of the square.

We know from before that D_4 acts on the four vertices V of the square, and this action is faithful. The corresponding permutation representation is an injective homomorphism $\rho: D_4 \to \operatorname{Perm}(V)$; after labelling the vertices, we can identify $\operatorname{Perm}(V) \cong S_4$. The image of D_4 in S_4 is the isomorphic copy of D_4 .

(b) Show that S_4 has exactly three subgroups isomorphic to D_4 , that these three are conjugate, and that any subgroup of S_4 of order 8 is isomorphic to D_4 .

Consider the 2-Sylows of S_4 . By the Sylow Theorem, the number of these is congruent to 1 modulo 2 and divides 3, so there are either 1 or 3. We claim that no subgroup of order 8 is normal. Indeed, a normal subgroup is a disjoint union of conjugacy classes including $\{e\}$, and the nonidentity conjugacy classes of S_4 have size 3,6,6,8; one cannot express 8 as 1 plus a sum of these. This shows the claim. Therefore, there cannot be a unique 2-Sylow (which would necessarily be normal), so there are three. Since any subgroup of order 8 is a 2-Sylow, and these are all conjugate, they are all isomorphic.

(c) Describe the subgroups of order 3 of S_4 .

¹Hint: D_4 acts on the vertices of a square.

Without using the Sylow Theorem we already know that any group of order three is isomorphic to C_3 , and that there are eight elements of order 3 in S_4 . Each subgroup of order 3 has two elements of order 3 plus the identity. Thus there are four subgroups of order three, each isomorphic to C_3 . Note that the Sylow theorem gives the two possibilities 1 or 4 for the number of 3-Sylows.

- (3) Proof of part (1) of Sylow's Theorem: Fix p. We will argue by induction on n that every group of n has a Sylow p-subgroup.
 - (a) Write $n = p^e m$. Address the case e = 0. Henceforth assume e > 0, so $p \mid n$.

If $p \nmid n$, the identity is a p-Sylow.

(b) Case 1: Assume that p divides |Z(G)|. Explain why there is some $N \leq G$ with |N| = p.

There is an element g of order p in the center by Cauchy. Any subgroup of the center is normal, so $N = \langle g \rangle$ works.

(c) Apply the induction hypothesis to G/N. How can you use this to find a Sylow p-subgroup in G?

The order of G/N is $p^{e-1}m < n$. By induction, there is a p-Sylow subgroup of G/N. This has order p^{e-1} and the index is m. By the Lattice Isomorphism theorem, there is a subgroup of index m in G, which has order p^e , so a p-Sylow.

(d) Case 2: Assume that p does not divide |Z(G)|. Show that there is some $g \in G$ such that $[G:C_G(g)]$ is *not* a multiple of p and *not* one. What does this say about $|C_G(g)|$? What do you get from the induction hypothesis?

Consider the class equation. Since the order of G is a multiple of p, and the order of the center is not, there is a nontrivial conjugacy class of size not a multiple of p. Thus there is some $g \in G$ with $[G:C_G(g)]$ not a multiple of p. This means that the order of $C_G(g)$ is p^eu with u|m and $u \neq m$. By the induction hypothesis, $C_G(g)$ has a p-Sylow, which is a subgroup $H \leq C_G(g)$ with $|H| = p^e$. This H is a p-Sylow subgroup of G.

- (4) Proof of parts (2) and (3) of Sylow's Theorem: Fix a Sylow p-subgroup P. Let S_P be the set of conjugates of P, namely $\{gPg^{-1} \mid g \in G\} \subseteq \operatorname{Syl}_p(G)$. We need to show that (2) $\operatorname{Syl}_p(G) = S_P$ and that (3) $\#\operatorname{Syl}_p(G) \equiv 1 \mod p$.
 - (a) Let Q be any p-subgroup of G, and let Q act on S_P by conjugation. Use the Lemma to show that for any $P_i \in S_P$, $\operatorname{Stab}_Q(P_i) = Q \cap P_i$.
 - (b) Show that $|S_P| = \sum_{i=1}^s [Q: Q \cap P_i]$ where P_i ranges through a set of representatives of distinct orbits for the action of Q on S_P .
 - (c) Take Q = P and WLOG $P_1 = P$. Deduce that $|S_P| \equiv 1 \mod p$.
 - (d) To show (2) by contradiction, suppose that Q is not contained in any conjugate of P. Observe that $Q \cap P_i \subsetneq Q$ for all i. Revisit the equation in part (b) and the conclusion of part (c) to obtain a contradiction.
 - (e) Deduce part (3) from part (c) and part (2).