THE MAIN THEOREM OF SYLOW THEORY

RECALL: Let G be a finite group and p be a prime number. Write |G| = p®m with e > 0 and p { m.

e A p-subgroup of G is a subgroup of order p* for some & > 0.
e A Sylow p-subgroup of G is a subgroup of order p°.
e We write Syl (G) for the set of Sylow p-subgroups of . We often write n,, for #Syl,(G).

MAIN THEOREM OF SYLOW THEORY: Let G be a finite group and p be a prime number. Write |G| = p®m
with e > 0 and p { m.
(1) There exists a Sylow p-subgroup of G.
(2) Every Sylow subgroup is conjugate. Moreover, for any p-subgroup () and any Sylow p-subgroup
P, there is some g € G such that Q < gPg~'.
(3) The number of Sylow p-subgroups of G is congruent to 1 modulo p.
(4) The number of Sylow p-subgroups of G divides m.

LEMMA: Let G be a finite group and p be a prime number. Let P be a Sylow p-subgroup of G and () be
any p-subgroup of G. Then Q N Ng(P) = Q N P.

(1) Let p < ¢ be distinct primes and G be a group of order pq. Use the Sylow Theorem to show that G is
not simple.

By parts (3) and (4) of the Sylow Theorem, the number of ¢-Sylow subgroups divides p and is
congruent to 1 modulo ¢, meaning of the form 1 4 gk. The only divisors of p are 1 and p, but p < ¢
implies p is not congruent to 1 modulo ¢g. This means there is only one ¢g-Sylow. This must then be
a normal subgroup of order ¢, a proper normal subgroup.

(2) Consider G = 5.
(@) Show' that G has a subgroup isomorphic to D,, the symmetry group of the square.

We know from before that D, acts on the four vertices V' of the square, and this action is

faithful. The corresponding permutation representation is an injective homomorphism p :
Dy — Perm(V'); after labelling the vertices, we can identify Perm (V) = S,. The image of
D, in S, is the isomorphic copy of D,.

(b) Show that S, has exactly three subgroups isomorphic to Dy, that these three are conjugate, and
that any subgroup of S, of order 8 is isomorphic to D,.

Consider the 2-Sylows of S;. By the Sylow Theorem, the number of these is congruent to
1 modulo 2 and divides 3, so there are either 1 or 3. We claim that no subgroup of order 8
is normal. Indeed, a normal subgroup is a disjoint union of conjugacy classes including {e},
and the nonidentity conjugacy classes of S, have size 3, 6, 6, 8; one cannot express 8 as 1 plus
a sum of these. This shows the claim. Therefore, there cannot be a unique 2-Sylow (which
would necessarily be normal), so there are three. Since any subgroup of order 8 is a 2-Sylow,
and these are all conjugate, they are all isomorphic.

(c) Describe the subgroups of order 3 of .S,.

"Hint: Dy acts on the vertices of a square.



Without using the Sylow Theorem we already know that any group of order three is isomor-
phic to (5, and that there are eight elements of order 3 in S;. Each subgroup of order 3 has two
elements of order 3 plus the identity. Thus there are four subgroups of order three, each iso-
morphic to C5. Note that the Sylow theorem gives the two possibilities 1 or 4 for the number
of 3-Sylows.

(3) Proof of part (1) of Sylow’s Theorem: Fix p. We will argue by induction on n that every group of n
has a Sylow p-subgroup.
(@) Write n = p°m. Address the case e = 0. Henceforth assume e > 0, so p| n.

If p 1 n, the identity is a p-Sylow.

(b) Case 1: Assume that p divides |Z(G)|. Explain why there is some N < G with |N| = p.

There is an element g of order p in the center by Cauchy. Any subgroup of the center is normal,
so N = (g) works.

(c) Apply the induction hypothesis to G/N. How can you use this to find a Sylow p-subgroup in G?

The order of G/N is p* 'm < n. By induction, there is a p-Sylow subgroup of G/N. This
has order p¢~! and the index is m. By the Lattice Isomorphism theorem, there is a subgroup
of index m in G, which has order p°, so a p-Sylow.

(d) Case 2: Assume that p does not divide |Z(G)|. Show that there is some ¢ € G such that
|G : Ci(g)] is not a multiple of p and not one. What does this say about |C(g)|? What do
you get from the induction hypothesis?

Consider the class equation. Since the order of G is a multiple of p, and the order of the center
is not, there is a nontrivial conjugacy class of size not a multiple of p. Thus there is some
g € G with [G : C(g)] not a multiple of p. This means that the order of Cz(g) is p®u with
ulm and u # m. By the induction hypothesis, Cs(g) has a p-Sylow, which is a subgroup
H < Cq(g) with |H| = p°. This H is a p-Sylow subgroup of G.

(4) Proof of parts (2) and (3) of Sylow’s Theorem: Fix a Sylow p-subgroup P. Let Sp be the set of
conjugates of P, namely {gPg~' | g € G} C Syl,(G). We need to show that (2) Syl,(G) = Sp and
that (3) #Syl,(G) = 1 mod p.

(a) Let @ be any p-subgroup of Gz, and let () act on Sp by conjugation. Use the Lemma to show that
for any P, € Sp, Stabg(P;) = Q N P,.

(b) Show that |[Sp| = >°7_,[@ : @ N P;] where P, ranges through a set of representatives of distinct
orbits for the action of ) on Sp.

(c) Take Q = P and WLOG P; = P. Deduce that |Sp| = 1 mod p.

(d) To show (2) by contradiction, suppose that () is not contained in any conjugate of P. Observe that
QNP ; @ for all 7. Revisit the equation in part (b) and the conclusion of part (c) to obtain a
contradiction.

(e) Deduce part (3) from part (c) and part (2).



