THE MAIN THEOREM OF SYLOW THEORY

RECALL: Let G be a finite group and p be a prime number. Write $|G| = p^e m$ with $e \ge 0$ and $p \nmid m$.

- A p-subgroup of G is a subgroup of order p^k for some $k \ge 0$.
- A Sylow p-subgroup of G is a subgroup of order p^e .
- We write $Syl_n(G)$ for the set of Sylow p-subgroups of G. We often write n_p for $\#Syl_p(G)$.

MAIN THEOREM OF SYLOW THEORY: Let G be a finite group and p be a prime number. Write $|G| = p^e m$ with $e \ge 0$ and $p \nmid m$.

- (1) There exists a Sylow p-subgroup of G.
- (2) Every Sylow subgroup is conjugate. Moreover, for any p-subgroup Q and any Sylow p-subgroup P, there is some $g \in G$ such that $Q \leq gPg^{-1}$.
- (3) The number of Sylow p-subgroups of G is congruent to 1 modulo p.
- (4) The number of Sylow p-subgroups of G divides m.

LEMMA: Let G be a finite group and p be a prime number. Let P be a Sylow p-subgroup of G and Q be any p-subgroup of G. Then $Q \cap N_G(P) = Q \cap P$.

- (1) Let p < q be distinct primes and G be a group of order pq. Use the Sylow Theorem to show that G is not simple.
- (2) Consider $G = S_4$.
 - (a) Show that G has a subgroup isomorphic to D_4 , the symmetry group of the square.
 - **(b)** Show that S_4 has exactly three subgroups isomorphic to D_4 , that these three are conjugate, and that any subgroup of S_4 of order 8 is isomorphic to D_4 .
 - (c) Describe the subgroups of order 3 of S_4 .
- (3) Proof of part (1) of Sylow's Theorem: Fix p. We will argue by induction on n that every group of n has a Sylow p-subgroup.
 - (a) Write $n = p^e m$. Address the case e = 0. Henceforth assume e > 0, so $p \mid n$.
 - **(b)** Case 1: Assume that p divides |Z(G)|. Explain why there is some $N \leq G$ with |N| = p.
 - (c) Apply the induction hypothesis to G/N. How can you use this to find a Sylow p-subgroup in G?
 - (d) Case 2: Assume that p does not divide |Z(G)|. Show that there is some $g \in G$ such that $[G:C_G(g)]$ is *not* a multiple of p and *not* one. What does this say about $|C_G(g)|$? What do you get from the induction hypothesis?
- (4) Proof of parts (2) and (3) of Sylow's Theorem: Fix a Sylow p-subgroup P. Let S_P be the set of conjugates of P, namely $\{gPg^{-1} \mid g \in G\} \subseteq \operatorname{Syl}_p(G)$. We need to show that (2) $\operatorname{Syl}_p(G) = S_P$ and that (3) $\#\operatorname{Syl}_p(G) \equiv 1 \mod p$.
 - (a) Let Q be any p-subgroup of G, and let Q act on S_P by conjugation. Use the Lemma to show that for any $P_i \in S_P$, $\operatorname{Stab}_Q(P_i) = Q \cap P_i$.
 - (b) Show that $|S_P| = \sum_{i=1}^s [Q:Q\cap P_i]$ where P_i ranges through a set of representatives of distinct orbits for the action of Q on S_P .
 - (c) Take Q = P and WLOG $P_1 = P$. Deduce that $|S_P| \equiv 1 \mod p$.
 - (d) To show (2) by contradiction, suppose that Q is not contained in any conjugate of P. Observe that $Q \cap P_i \subsetneq Q$ for all i. Revisit the equation in part (b) and the conclusion of part (c) to obtain a contradiction.
 - (e) Deduce part (3) from part (c) and part (2).

¹Hint: D_4 acts on the vertices of a square.